Skip to main content
Log in

First results on the water chemistry, algae and trophic status of an Andean acidic lake system of volcanic origin in Patagonia (Lake Caviahue)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The acidic caldera lake Caviahue (Patagonia, Argentina) and its main tributaries were studied on two dates during September 1998. The main results are: The acidity of the Lake Caviahue (pH: 2.56, acidity: >5 mmol H+ l−1) is controlled by the extremely acidic Upper Rio Agrio (pH: 1.78, acidity: >20 mmol H+ l−1). The high sulphate contents of both the river and the lake can be attributed to sulphuric acid generated by the uptake of sulphurous gases in the crater lake of Copahue Volcano at approximately 2800 m a.s.l. The high concentrations of both Fe and trace metals (e.g. Cr, Ni, Zn) in Lake Caviahue originate from sulphur–acid interactions with the predominantly volcanic geology of the catchment area. The P-rich andesitic geology influences both the Upper and Lower Rio Agrio and Lake Caviahue. Both were found to have high phosphorus concentrations (300–500 μg P l−1) indicative of a high potential for eutrophication. The plankton community consisted of bacterioplankton, phytoplankton and rotifers. The phytoplankton was dominated by one green alga, Keratococcus raphidioides (>90% of total abundance) followed by a green sphaerical and Chlamydomonas sp. The total phytoplankton density was about 15 000 cells ml−1 in the upper 10 m of the water column. Rotifers were represented by one bdelloid species and their abundance was highly variable (360–4040 ind l−1) in the water columm. In the Upper and Lower Rio Agrio, the epilithic community was dominated by one chloroccocal species and two species of Ulothricales. According to trophic categories based on phytoplankton density and TP concentration, Lake Caviahue can be classified as mesotrophic/eutrophic. However, chlorophyll a concentrations observed were not in agreement with this state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Albertano, P., 1995. Microalgae from sulphuric acid environments. In Schnepf, E. & R. C. Starr (eds), Algae, Environment and Humic Affairs. Biopress, Bristol: 19–38.

    Google Scholar 

  • APHA, 1992. Standard Methods for the Examination of Water and Wastewaters, 16th edn. American Public Health Association, Washington, D.C.: 1134 pp.

    Google Scholar 

  • Blouin, A. C., 1989. Patterns of plankton species, pH and associated water chemistry in Nova Scotia lakes. Wat. Air Soil Pollut. 46: 343–358.

    Google Scholar 

  • Caraco, N. F., J. J. Cole & G. E. Likens, 1989. Evidence for sulphate-controlled phosphorus release from sediments of aquatic systems. Nature 341: 316–318.

    Google Scholar 

  • Chillrud, S. & F. Pedrozo, 1994. Chemical weathering of phosphate and germanium in glacial meltwater streams: effects of subglacial pyrite oxidation. Limnol. Oceanogr. 39: 1130–1140.

    Google Scholar 

  • Delpino, D., J. Varekamp & A. Bermudez, 1997. Influencia de un sistema volcánico activo sobre un lago de origen glacial: Lago Caviahue. Neuquén. Argentina. 7th ILEC International Conference on Lakes Conservation and Management, Lacar' 97. San Martín de los Andes, Argentina: 1–4.

  • Deneke, R., 2000. Review of rotifers and crustaceans in highly acidic environments of pH values ¡Ñ3. Hydrobiologia 433: 167–172.

    Google Scholar 

  • Dillon, P. J., N. D. Yan & H. H. Harvey, 1984. Acidic deposition: effects on aquatic ecosystems. CRC Crit. Rev. Envir. Control 13: 167–194.

    Google Scholar 

  • Friese, K., M. Mages, K. Wendt-Potthoff & T. Neu, 1997. Determination of heavy metals in biofilms of the River Elbe by total refelection X-ray fluorescence spectrometry. Spectrochim. Acta B5: 1019–1025.

    Google Scholar 

  • Geller, W., H. Klapper & M. Schultze, 1998. Natural and anthropogenic sulfuric acidification of lakes. In Geller, W., H. Klapper & W. Salomons (eds), Acidic Mining Lakes. Springer, Berlin: 3–14.

    Google Scholar 

  • George, D. G. & W. Davison, 1998. Managing the pH of an acid lake by adding phosphate fertiliser. In Geller, W., H. Klapper & W. Salomons (eds), Acidic Mining Lakes. Springer, Berlin: 365–384.

    Google Scholar 

  • Henrikson, L. & Y. Brodin, 1995. Liming of Acidified Waters. Springer, Berlin: 476 pp.

    Google Scholar 

  • Hedin, R. S., R. S. Narin & R. L. P. Kleinmann, 1994. Passive treatment of coal mine drainage. U.S. Bureau of Mines Inform. Circ., IC 9389: 35 pp.

  • Hobbie, J. E., R. J. Daley & S. Jasper, 1977. Use of Nucleopore filters for counting bacteria by fluorescence microscopy. Appl. Envir. Microbiol. 33: 1225–1228.

    Google Scholar 

  • Jones, R., J. Young, A. Hartley & A. E. Bailey-Watts, 1996. Light limitation of phytoplankton development in an oligotrophic lake – Loch Ness, Scotland. Freshwat. Biol. 35: 533–543.

    Google Scholar 

  • Lessmann, D., A. Fyson & B. Nixdorf, 2000. Phytoplankton of the extremely acidic mining lakes of Lusatia (Germany) with pH <3. Hydrobiologia 433: 123–128.

    Google Scholar 

  • McConathy, J. R. & J. B. Stahl, 1982. Rotifera in the plankton and among filamentous algal clumps in 16 acid strip-mine lakes. Trans. Illinois Acad. Sci. 75: 85–90.

    Google Scholar 

  • Nixdorf, B., K Wollmann & R. Deneke, 1998a. Ecological potential for planktonic development and food web interactions in extremely acidic mining lakes in Lusatia. In Geller, W., H. Klapper & W. Solomons (eds), Acidic Mining Lakes. Springer Verlag, Berlin, Heidelberg: 147–167.

    Google Scholar 

  • Nixdorf, B., U. Mischke & D. Lessmann, 1998b. Chrysophytes and Chlamydomonads: pioneer colonists in extremely acidic mining lakes (pH<3) in Lusatia (Germany). Hydrobiologia 369/370: 315–327.

    Google Scholar 

  • Niyogi, D. K., D. M. McKnight & W. M. Lewis, Jr., 1999. Influences of water and substrate quality for periphyton in a montane stream affected by acid mine drainage. Limnol. Oceanogr. 44: 804–809.

    Google Scholar 

  • Nockolds, S. R., 1954. Average chemical composition of some igneous rocks. Bull. Geol. Soc. Am. 65: 1007–1032.

    Google Scholar 

  • Packroff, G., 2000. Protozooplankton in acidic mining lakes with special respect to ciliates. Hydrobiologia 433: 157–166.

    Google Scholar 

  • Pedrozo, F., S. Chillrud, P. Temporetti & M. Diaz, 1993. Chemical composition and Nutrient limitation in rivers and lakes of northern Patagonian Andes (35.5–42S; 71 W) (Rep. Argentina). Verh. int. Ver. Limnol. 25: 207–214.

    Google Scholar 

  • Pesce, A. H., 1989. Evolución volcano-tectonic del Complejo efusivo Copahue-Caviahue y su modelo geotermico preliminar. Rev. Asoc. Geol. Arg. 44: 307–327.

    Google Scholar 

  • Quirós, R., 1988. Relationships between air temperature, depth, nutrients and chlorophyll in 103 Argentinian lakes. Verh. int. Ver. Limnol. 23: 647–658.

    Google Scholar 

  • Rapacioli, R., 1985. The Lake Caviahue and its Basin. Technical Report of the EPAS Government Office, Province of Neuquén, Argentina: 1–72.

    Google Scholar 

  • Reynolds, C. S., 1997. Vegetation processes in the pelagic: a model for ecosystem theory. Excellence in Ecology 9. Oldendorf, Ecology Institute, England: 404 pp.

    Google Scholar 

  • Schwenke, H., P. A. Beaven & J. Knoth, 1999. Applications of total reflection X-ray fluorescence spectrometry in trace element and surface analysis. Fresenius J. Anal. Chem. 365: 19–27.

    Google Scholar 

  • Siegfried, C. A., J. A. Bloomfield & W. Sutherland, 1989. Acidity status and phytoplankton species richness, standing crop, and community composition in Adirondack, New York, U.S.A. lakes. Hydrobiologia 175: 13–32.

    Google Scholar 

  • Snoeijs, P. & F. Snoeijs, 1993. A simple sampling device for taking quantitative microalgal samples from stone surfaces. Arch. Hydrobiol. 129: 121–126.

    Google Scholar 

  • Stumm, W. & J. J. Morgan, 1981. Aquatic Chemistry, 2nd edn. Wiley-Interscience, NY: 779 pp.

    Google Scholar 

  • Tilman, D., R. Kiesling, R. Sterner, S. S. Kilham & F. A. Johnson, 1986. Green, bluegreen and diatom algae: taxonomic differences in competitive ability for phosphorus, silicon and nitrogen. Arch. Hydrobiol. 106: 473–485.

    Google Scholar 

  • Ueno, M., 1958. The disharmonious lakes of Japan. Verh. int. Ver. Limnol. 13: 217–226.

    Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt. int. Ver. Limnol. 9: 38 pp.

    Google Scholar 

  • Vollenweider, R., 1968. Scientific fundamentals of the eutrophication of lakes and flowing waters with particular reference to nitrogen and phosphorus as factors in eutrophication. OECD, Paris: 189 pp.

  • Wetzel, R. 1975. Limnology. Omega. Barcelona: 743 pp.

  • Woelfl, S., 1997. Planktongesellschaften der mitteldeutschen Tagebaurestseen. DGL Tagungsberichte 1998: 376–380.

    Google Scholar 

  • Woelfl, S., 2000. Limnology of sulphur-acidic lignite mining lakes. Biological properties: plankton structure of an extreme habitat. Verh. int. Ver. Limnol. (in press).

  • Woelfl, S. & B. Whitton, 2000. Sampling, preservation and quantification of biological samples from highly acidic environments (pH <3). Hydrobiologia 433: 173–180.

    Google Scholar 

  • Yamamoto, Y., H. Tatsuzawa & M. Wada, 1998. Effect of environmental conditions on the composition of lipids and fatty acids of Chlamydomonas isolated from an acid lake. Verh. int. Ver. Limnol. 26: 1788–1790.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedrozo, F., Kelly, L., Diaz, M. et al. First results on the water chemistry, algae and trophic status of an Andean acidic lake system of volcanic origin in Patagonia (Lake Caviahue). Hydrobiologia 452, 129–137 (2001). https://doi.org/10.1023/A:1011984212798

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011984212798

Navigation