Advertisement

Space Science Reviews

, Volume 96, Issue 1–4, pp 293–316 | Cite as

The Martian Surface Composition

  • Jean-Pierre Bibring
  • Stéphane Erard
Article

Abstract

Mars is unique to have undergone all planetary evolutionary steps, without global resets, till its geological death: this is reflected in the variety of its surface features. The determination of Mars surface composition has thus the potential to identify the processes responsible for the entire Mars evolution, from geological timescales to seasonal variations. Due to technical challenges, only few investigations have been performed so far. They are summarized in this paper, and their interpretation is discussed in terms of surface materials (minerals, ices and frosts).

Keywords

Seasonal Variation Surface Feature Surface Material Technical Challenge Surface Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, J.B., and McCord, T.B.: 1969, 'Mars: Interpretation of Spectral Reflectivity of Light and Dark Regions', J. Geophys. Res. 74, 4851-4856.Google Scholar
  2. Allen, C.C., Gooding, J.L., Jercinovic, M., and Keil, K.: 1981, 'Altered Basaltic Glass-A Terrestrial Analog to the Soil of Mars', Icarus 45, 347-369.Google Scholar
  3. Bandfield, J., Hamilton, V., and Christensen, P.: 2000, 'A Global View of Martian Surface Composition from MGS-TES', Science 287, 1626-1630.Google Scholar
  4. Banin, A., and Margulies, L.: 1983, 'Simulation of Viking Biology Experiments Suggests Smectites, not Palagonites, as Martian Soil Analogs', Nature 305, 523-525.Google Scholar
  5. Banin, A., Clark, B.C., and Wänke, H.: 1992, 'Surface Chemistry and Mineralogy', in H. Kieffer, B. Jakosky, C. Snyder, and M. Matthews (eds.), Univ. Arizona Press, Tucson, pp. 594-625.Google Scholar
  6. Bell, J.: 1996, 'Iron, Sulfate, Carbonate, and Hydrated Minerals on Mars', in M.D. Dyar, C. Mc-Cammon, and M.W. Schaefer (eds.), Mineral Spectroscopy: A Tribute to Roger G. Burns, Geochemical Society, pp. 359-380.Google Scholar
  7. Bell, J.F., McCord, T.B., and Owensby, P.D.: 1990, 'Observational Evidence of Crystalline Iron Oxides on Mars', J. Geophys. Res. 95, 14,447-14,462.Google Scholar
  8. Berkley, J.L., and Drake, M.J.: 1981, 'Weathering of Mars-Antarctic Analog Studies', Icarus 45, 231-249.Google Scholar
  9. Bibring, J.-P., et al.: 1989, 'Results from the ISM Experiment', Nature 341, 591-592.Google Scholar
  10. Binder, A.B., Arvidson, R.E., Guinness, E.A., Jones, K.L., Mutch, T.A., Morris, E.C., Pieri, D.C., and Sagan, C.: 1977, 'The Geology of the Viking Lander 1 Site', J. Geophys. Res. 82, 4439-4451.Google Scholar
  11. Bishop, J., and Pieters, C.: 1995, 'Low-temperature and Low Atmospheric Pressure Infrared Reflectance Spectra of Mars Soil Analog Materials', J. Geophys. Res. 100, 5369-5379.Google Scholar
  12. Bishop, J., Pieters, C., Burns, R., Edwards, J., Mancinelli, R., and Fröschl, H.: 1995, 'Reflectance Spectroscopy of Ferric Sulfate-bearing Montmorillonites as Mars Soil Analog Materials', Icarus 117, 101-119.Google Scholar
  13. Calvin, W.M., and King, T.: 1997, 'Spectral Characteristics of Fe-bearing Phyllosilicates: Comparison to Orgueil, Murchison and Murray', Met. Planet. Sci. 32, 693-702.Google Scholar
  14. Calvin, W.M., and Martin, T.Z.: 1994, 'Spectra Variability in the Seasonal South Polar Cap of Mars', J. Geophys. Res. 99, 21,143-21,152.Google Scholar
  15. Chassefière, E., Drossart, P., and Korablev, O.: 1995, 'Post-Phobos Model for the Altitude and Size Distribution of Dust in the Low Martian Atmosphere', J. Geophys. Res. 100, 5525-5539.Google Scholar
  16. Christensen, P.R., et al.: 1998, 'Results from the Mars Global Surveyor Thermal Emission Spectrometer', Science 279, 1692-1695.Google Scholar
  17. Christensen, P.R., et al.: 2000a, 'Detection of Crystalline Hematite Mineralization on Mars by the Thermal Emission Spectrometer:E vidence for Near-surfaceWater', J. Geophys. Res. 105, 9623-9642.Google Scholar
  18. Christensen, P.R., Bandfield, J.L., Smith, M.D., Hamilton, V.E., and Clark, R.N.: 2000b, 'Identification of a Basaltic Component on the Martian Surface from Thermal Emission Spectrometer Data', J. Geophys. Res. 105, 9609-9622.Google Scholar
  19. Clancy, R.T., and Lee, S.W.: 1991, 'A New Look at Dust and Clouds in the Mars Atmosphere: Analysis of Emission-phase-function Sequences from Global Viking IRTM Observations', Icarus 93, 135-158.Google Scholar
  20. Clark, R.N., and McCord, T.B.: 1982, 'Mars Residual Polar Cap: Earth-based Spectroscopic Confirmation of Water Ice as a Major Constituent and Evidence for Hydrated Minerals', J. Geophys. Res. 87, 367-370.Google Scholar
  21. Clark, B.C., Baird, A.K., Weldon, R.J., Tsusaki, D.M., Schnabel, L., and Candelaria, M.P.: 1982, 'Chemical Composition of Martian Fines', J. Geophys. Res. 87, 10,059-10,067.Google Scholar
  22. Drossart, P., Rosenqvist, J., Erard, S., Langevin, Y., Bibring, J.-P., and Combes, M.: 1991, 'Martian Aerosols Properties from the Phobos/ISM Experiment', Annal. Geophys. 9, 754-760.Google Scholar
  23. Erard, S.: 2000, 'The 1994-95 Apparition of Mars Observed from Pic-du-Midi', Planet. Space Sci. 48, 1271-1287.Google Scholar
  24. Erard, S., and Calvin, W.: 1997, 'New Composite Spectra of Mars, 0.4-5.7 µm', Icarus 130, 449-460.Google Scholar
  25. Erard, S., et al.: 1991, 'Spatial Variations in Composition of the Valles Marineris and Isidis Planitia Regions of Mars Derived from the ISM Data', Proc. 21 st Lunar Planet. Sci. Conf., 437-455.Google Scholar
  26. Erard, S., Mustard, J., Murchie, S., Bibring, J.-P., Cerroni, P., and Coradini, A.: 1994, 'Effects of Aerosols Scattering on Near-infrared Observations of theMartian Surface', Icarus 111, 317-337.Google Scholar
  27. Fischer, E.M., and Pieters, C.M.: 1993, 'The Continuum Slope of Mars:B i-directional Reflectance Investigations and Applications to Olympus Mons', Icarus 102, 185-202.Google Scholar
  28. Gaffey, S.J., McFadden, L.A., Nash, D., and Pieters, C.: 1993, 'Ultraviolet, Visible, and Near-infrared Reflectance Spectroscopy:L aboratory Spectra of Geologic Materials', in C.M. Pieters and P.A. Englert (eds.), Remote Geochimical Analysis: Elemental and Mineralogical Composition, Cambridge University Press, pp. 43-77.Google Scholar
  29. Golden, D.C., Ming, D.W., Schwandt, C.S., Morris, R.V., Yang S.V., and Lofgren, G.E.: 2000, 'An Experimental Study on Kinetically-driven Precipitation of Calcium-magnesium-iron Carbonates from Solution:I mplications for the Low-temperature Formation of Carbonates in Martian Allan Hills 84001', Met. Planet. Sci. 35, 457-465.Google Scholar
  30. Gooding, J.L.: 1992, 'Soil Mineralogy on Mars: Possible Clues from Salts and Clay in SNC Meteorites', Icarus 99, 28-41.Google Scholar
  31. Grassi, D., and Formisano, V.: 2000, 'IRIS Mariner 9 Data Revisited: 2. Aerosol Dust Composition', Planet. Space Sci. 48, 577-598.Google Scholar
  32. Hamilton, V., Bandfield, J., and Christensen, P.: 2000, 'The Mineralogy of Martian Dark Regions fromMGS TES Data:Prelimin ary Determination of Pyroxene and Feldspar Compositions', Proc. 31 st Lunar Planet. Sci., LPI, Houston, abstract #1824.Google Scholar
  33. Hanel, R., et al.: 1972, 'Investigation of the Martian Environment by Infrared Spectroscopy on Mariner 9', Icarus 17, 47-56.Google Scholar
  34. Hoefen, T.M., Clark, R.N., Pearl, J.C., and Smith, M.D.: 2000, 'Unique Spectral Features in Mars Global Surveyor Thermal Emission Spectra:Implications for Surface Mineralogy in Nili Fossae', in 32 nd Annual DPS Meeting, Bull Am. Astron. Soc., (abstract).Google Scholar
  35. Hunt, G.R., Salisbury, J.W., and Lenhoff, C.J.: 1973, 'Visible and Near-infrared Spectra of Minerals and Rocks:VI, Additional Silicates', Mod. Geol. 4, 85-106.Google Scholar
  36. Hviid, S.F., et al.: 1997, 'Magnetic Properties Experiments on the Mars Pathfinder Lander: Preliminary Results', Science 278, 1768-1771.Google Scholar
  37. Kieffer, H.H., and Zent: 1992, 'Quasi-periodic Climate Change on Mars', in H.H. Kieffer, B.M. Jakosky, C.W. Snyder and M.S. Matthews (eds.), Mars, Univ. Arizona Press, Tucson, pp. 1180-1218.Google Scholar
  38. Kieffer, H.H., Martin, T.Z., Peterfreund, A.R., Jakosky, B.M., Miner, E.D., and Palluconi, F.D.: 1977, 'Thermal and Albedo Mapping of Mars During the Viking Primary Mission', J. Geophys. Res. 82, 4249-4291.Google Scholar
  39. Kirkland, L.E., and Herr, K.C.: 2000, 'Spectral Anomalies in the 11 and 12 µm Region from the Mariner Mars 7 Infrared Spectrometer', J. Geophys. Res. 105, 22,507-22,516.Google Scholar
  40. Kirkland, L., Forney, P., and Herr, K.: 1998, 'Mariner Mars 6/7 Infrared Spectra:Ne w Calibration and a Search for Water Ice Clouds', in: Lunar Planet. Sci. XXIX, Lunar and Planetary Institute, abstract #1516.Google Scholar
  41. Klein, H.P., Horowitz, N.H., and Biemann, K.: 1992, 'The Search for Extant Life on Mars', in H. Kieffer, B. Jakosky, C. Snyder, and M. Matthews (eds.), University of Arizona Press, Tucson, pp. 1221-1233.Google Scholar
  42. Ksanfomality, L., et al.: 1991, 'Phobos: Spectrophotometry Between 0.3 and 0.6 µm and IRradiometry', Planet. Space Sci. 39, 311-325.Google Scholar
  43. Lellouch, E., Encrenaz, T., de Graauw, T., Erard, S., Morris, P., Feuchtgruber, H., Crovisier, J., Girard, T., and Burgdorf, M.: 2000, 'The 2.4-45 µm Spectrum of Mars Observed with the Infrared Space Observatory', Planet. Space Sci., in press.Google Scholar
  44. Martin, P., Pinet, P., Bacon, R., Rousset, A., and Bellagh, F.: 1996, 'Martian Surface Mineralogy from 0.8 to 1.05 µm TIGER Spectro-imagery Measurements in Terra Sirenum and Tharsis Montes Formation', Planet. Space Sci. 44, 859-888.Google Scholar
  45. McCord, T.B., and Adams, J.B.: 1969, 'Spectral Reflectivity of Mars', Science 163, 1058-1060.Google Scholar
  46. McKay, D.S., Gibson, E.K., Jr., Thomas-Keprta, K.L., Vali, H., Romanek, C.S., Clemett, S.J., Chillier, X.D.F., Maechling, C.R., and Zare, R.N.: 1996, 'Search for Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001', Science 273, 924-930.Google Scholar
  47. McSween, H.Y., Jr.: 1994, 'What Have we Learned About Mars from SCN Meteorites', Meteoritics 29, 757-779.Google Scholar
  48. Moersch, J.E., Hayward, T.L., Nicholson, P.D., Suyres, S.W., Van Cleve, J., and Christensen, P.R.: 1997, 'Identification of a 10-µm Silicate Absorption Feature in the Acidalia Region of Mars', Icarus 126, 183-196.Google Scholar
  49. Moroz, V.I.: 1964, 'The Infrared Spectrum of Mars (1.1-4.1 µm)', Soviet Astron. 8, 273-281.Google Scholar
  50. Morris, R., Agresti, D., Lauer, H., Newcomb, J., Shelfer, T., and Murali, A.: 1989, 'Evidence for Pigmentary Hematite on Mars Based on Optical, Magnetic and Mössbauer Study of Superparamagnetic (Nanocrystalline) Hematite', J. Geophys. Res. 94, 2760-2778.Google Scholar
  51. Morris, P., de Graauw, T., Lellouch, E., Henderson, B.G., Erard, S., Encrenaz, T., Feuchtgruber, H., Burgdorf, M., and Davis, G.R.: 2001, 'A Detailed Assessment of Carbonates in Thermal Infrared Spectroscopy of Mars with the ISO Short Wavelength Spectrometer, Icarus, submitted.Google Scholar
  52. Murchie, S., Kirkland, L., Erard, S., Mustard, J., and Robinson, M.: 2000, 'Near-Infrared Spectral Variations of Martian Surface Materials from ISMImaging Spectrometer Data', Icarus 147, 444-471.Google Scholar
  53. Murray, B., et al.: 1991, 'Preliminary Assessment of Termoskan Observations of Mars', Planet. Space Sci. 39, 237-265.Google Scholar
  54. Mustard, J.F., and Sunshine, J.M.: 1995, 'Seeing Through the Dust:Martian Crustal Heterogeneity and Links to the SNC Meteorites', Science 267, 1623-1626.Google Scholar
  55. Mustard, J., Erard, S., Bibring, J.-P., Head, J.W., Hurtrez, S., Langevin, Y., Pieters, C.M., and Sotin, C.J.: 1993, 'The Surface of Syrtis Major: Composition of the Volcanic Substrate and Mixing with Altered Dust and Soil', J. Geophys. Res. 98, 3387-3400.Google Scholar
  56. Mustard, J., Murchie, S., Erard, S., and Sunshine, J.: 1997, 'In Situ Compositions of Martian Volcanics:Implications for the Mantle', J. Geophys. Res. 102, 25,605-25,615.Google Scholar
  57. Pimentel, G.C., Forney, P.B., and Herr, K.C.: 1974, 'Evidence About Hydrate Solid Water in the Martian Surface from the 1969 Mariner Infrared Spectrometer', J. Geophys. Res. 79, 1623-1634.Google Scholar
  58. Pinet, P., and Chevrel, S.: 1990, 'Spectral Identification of Geological Units on the Surface of Mars Related to the Presence of Silicates from Earth-based Near-infrared Telescopic Charge-coupled Device Imaging', J. Geophys. Res. 95, 14,435-14,446.Google Scholar
  59. Pollack, J.B., et al.: 1990, 'Thermal Emission Spectra of Mars (5.4-10.5 µm):Evidence for Sulphates, Carbonates, and Hydrates, J. Geophys. Res. 95, 14,595-14,628.Google Scholar
  60. Rieder, R., Economou, T., Wänke, H., Turkevich, A., Crisp, J., Brückner, J., Dreibus, G., and Mc-Sween, H.Y.J.: 1997, 'The Chemical Composition of Martian Soil and Rocks Returned by the Mobile Alpha Proton X-ray Spectrometer:Preliminary Results from the X-ray Mode', Science 278, 1771-1773.Google Scholar
  61. Roush, T., Roush, E., Singer, R., and Lucey, P.: 1992, 'Estimates of Absolute Flux and Radiance Factor of Localized Regions of Mars in the (2-4 µm) Wavelength Region', Icarus 99, 42-50.Google Scholar
  62. Roush, T.L., Blaney, D.L., and Singer, R.B.: 1993, 'The Surface Composition of Mars as Inferred from Spectroscopic Observations', in C.M. Pieters and P.A. Englert (eds.), Remote Geochimical Analysis: Elemental and Mineralogical Composition, Cambridge Univ. Press, New York, pp. 367-397.Google Scholar
  63. Salisbury, J.W.: 1993, 'Mid-infrared Spectroscopy: Laboratory Data', in C.M. Pieters and P.A. Englert (eds.), 'Remote Geochimical Analysis:Elemental and Mineralogical Composition', Cambridge Univ. Press, pp. 79-98.Google Scholar
  64. Singer, R.B.: 1981, Near-infrared Spectral Reflectance of Mineral Mixtures-Systematic Combinations of Pyroxenes, Olivine, and Iron Oxides', J. Geophys. Res. 86, 7967-7982.Google Scholar
  65. Singer, R.B.: 1982, 'Spectral Evidence for the Mineralogy of High-albedo Soils and Dust on Mars', J. Geophys. Res. 87, 10,159-10,168.Google Scholar
  66. Soderblom, L.: 1992, 'The Composition and Mineralogy of the Martian Surface from Spectroscopic Observations:0.3 µm to 50 µm', in H. Kieffer, B. Jakosky, C. Snyder, and M. Matthews (eds.), Mars, Univ. Arizona Press, Tucson, pp. 557-597.Google Scholar
  67. Toon, O.B., Pollack, J.B., and Sagan, C.: 1977, 'Physical Properties of the Particles Composing the Martian Dust Storm of 1971-1972', Icarus 30, 663-696.Google Scholar
  68. Treiman, A.H., Gleason, J.D., and Bogard, D.D.: 2000, 'The SNC Meteorites are from Mars', Planet. Space Sci. 48, 1213-1230.Google Scholar
  69. Wänke, H., Brückner, J., Dreibus, G., Rieder, R., and Ryabchikov, I.: 2001, 'Chemical Composition of Rocks and Soils at the Pathfinder Site', Space Sci. Rev., this volume.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Jean-Pierre Bibring
    • 1
  • Stéphane Erard
    • 1
  1. 1.Institut d'Astrophysique SpatialeOrsay CampusFrance

Personalised recommendations