Skip to main content
Log in

A Model for Predicting Effective Properties of Piezocomposites with Non-piezoelectric Inclusions

  • Published:
Journal of elasticity and the physical science of solids Aims and scope Submit manuscript

Abstract

Most piezocomposites, which have been widely used in engineering, consist of piezoelectric inclusions and a non-piezoelectric matrix. Due to the limits of fabrication technology, it is hard to avoid the matrix intermingling with other non-piezoelectric inclusions, such as cavities. The non-piezoelectric inclusions can substantially affect performance of piezocomposites. In this paper we study the electromechanical fields in piezocomposites which are composed of a non-piezoelectric matrix embedded with both piezoelectric and non-piezoelectric inclusions. Closed-form relations are obtained for the effective electroelastic moduli of a piezocomposite with both piezoelectric and non-piezoelectric inclusions. The effective properties of a 1-3 type piezocomposite with non-piezoelectric spherical inclusions are analyzed carefully and explicit formulae for the effective electroelastic properties of a 1-3-0 piezocomposite are also obtained. The analysis shows that the effect of non-piezoelectric inclusions on the electroelastic properties of piezocomposites is significant and should not be neglected. The model proposed in this paper is expected to be useful for predicting and analyzing the overall electromechanical properties of piezocomposites with a non-piezoelectric matrix containing both piezoelectric and non-piezoelectric inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.E. Newnham, D.P. Skinner and L.E. Cross, Connectivity and piezoelectric pyroelectric composites. Mat. Res. Bull. 13 (1978) 525–536.

    Google Scholar 

  2. S.S. Rao and M. Sunar, Piezoelectricity and its use in disturbance sensing and control of flexible structures: A survey. Appl. Mech. Rev. 47 (1994) 113–123

    Google Scholar 

  3. C.J. Disa and D.K. Das-Gupta, Inorganic ceramic/polymer ferroelectric composite electrets. IEEE Trans. Dielectrics and Electric Inclusion 3 (1996) 706–734.

    Google Scholar 

  4. W.A. Smith and A.A. Shaulov, Composite piezoelectrics: Basic research to a practical device. Ferroelectrics 87 (1988) 307–320.

    Google Scholar 

  5. W.A. Smith, Modeling 1–3 composite piezoelectric: hydrostatic response. IEEE Ultrasonic Ferroelec. Freq. Contr. 40 (1993) 41–48.

    Google Scholar 

  6. P.F. Gobin, G. Guenin, M. Morin, M. Salvia and J. Tatibouet, Smart materials: A future for composites. J. Intelligent Material Systems Struct. 7 (1996) 353–357.

    Google Scholar 

  7. Y. Ohara, M. Miyayama, K. Koumoto and H. Yanagida, PZT-polymer piezoelectric composites: A design for an acceleration sensor. Sensors and Acruators A 26 (1993) 121–126.

    Google Scholar 

  8. A. Egusa and N. Iwasawa, Piezoelectric pints: preparation and applications as bulit-in vibration sensors of structural materials. J. Mater. Sci. 28 (1993) 1667–1672.

    Google Scholar 

  9. B.A. Auld and Y. Wang, Acoustic wave vibrations in periodic composite plates. In: IEEE Ultrasonics Symposium, Texas, USA (1984) pp. 528–532.

  10. H. Banno, Theoretical equations for the dielectric and piezoelectric properties of ferroelectric composites based on modified cubes model. Japan J. Appl. Phys. 24 (1985) 445–447.

    Google Scholar 

  11. H.L.W. Chan and J. Unsworth, Simple model for piezoelectric ceramic/polymer 1–3 composites used in ultrasonic transducer applications. IEEE Ultrasonics Ferroelec. Freq. Contr. 36 (1989) 434–441.

    Google Scholar 

  12. A.A. Grekov, S.O. Kramarov and A.A. Kuprienko, Effective properties of transversely isotropic piezocomposite with cylindrical inclusions. Ferroelectrics 99 (1989) 115–126.

    Google Scholar 

  13. J.A. Hossack and R.L. Bedi, Design of composite piezoelectric transducers. In: K. Das-Gupta (ed.), Ferroelectric Polymers and Ceramic-polymer composites, Trans-Tech Pub., Switzerland (1994).

    Google Scholar 

  14. W.A. Smith, Modeling 1–3 composite piezoelectrics: Thickness-mode oscillations. IEEE Ultrasonics Ferroelec. Freq. Contr. 38 (1991) 40–47.

    Google Scholar 

  15. Y. Benveniste and G.J. Dovrak, On uniform fields and universal relations in piezoelectric composites. J. Mech. Phys. Solids 40 (1992) 1295–1312.

    Google Scholar 

  16. Y. Benveniste, The determination of the elastic and electric fields in a piezoelectric inhomogeneity. J. Appl. Phys. 72 (1992) 1086–1095.

    Google Scholar 

  17. Y. Benveniste, Universal relations in piezoelectric composites with eigenstress and polarization fields, I: Binary media: Local fields and effective behavior. II, multiphase media: effective behavior. ASME J. Appl. Mech. 60 (1993) 265–270.

    Google Scholar 

  18. Y. Benveniste, Exact results concerning the local fields and effective properties in piezoelectric composites. Trans. ASME J. Engng. Mater. Tech. 116 (1994) 260–267.

    Google Scholar 

  19. C.J. Disa and D.K. Das-Gupta, Piezoelectric properties of 0–3 ceramic-polar polymer composites. In: Materials Research Society Symposium Proc., Vol.276 (1992) pp. 25–29.

    Google Scholar 

  20. B. Wang, Three dimensional analysis of an ellipsoidal inclusion in a piezoelectric material. Internat. J. Solid Struct. 29 (1992) 313–318.

    Google Scholar 

  21. D.K. Das-Gupta and M.J. Abdullah, Electroactive properties of polymer-ceramic composites. Ferroelectrics 87 (1993) 2462–2466.

    Google Scholar 

  22. M.L. Dunn and M. Taya, An analysis of piezoelectric composite materials containing ellipsoidal inhomogeneities. Internat. J. Solids. Struct. 30 (1993) 161–175.

    Google Scholar 

  23. M.L. Dunn and M. Taya, Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites. Proc. Roy. Soc. London A 443 (1993) 265–287.

    Google Scholar 

  24. R.E. Newnham and G.R. Ruschau, Electromechanical properties of smart materials. J. Intelligent Mater. System and Struct. 4 (1993) 289–294.

    Google Scholar 

  25. B. Jiang, D.N. Fang and K.C. Hwang, The effective properties of piezocomposites, Part I: Single inclusion problem. Acta Mechanica Sinica 13 (1997) 339–346.

    Google Scholar 

  26. B. Jiang, D.N. Fang and K.C. Hwang, A unified model for piezocomposites with nonpiezoelectric matrix and piezoelectric ellipsoidal inclusions. Internat. J. Solids Struct. 36 (1999) 2707–2733.

    Google Scholar 

  27. M. Avellaneda and P.J. Swart, Calculating the performance of 1–3 piezoelectric composite for hydrophone applications: An effective medium approach. J. Acoust. Soc. Am. 103 (1998) 1449–1467.

    Google Scholar 

  28. T. Furukawa, K. Fujino and E. Fukasa, Electromechanical properties in the composites of epoxy resin and PZT ceramics. Japan J. Appl. Phys. 15 (1976) 2119–2129.

    Google Scholar 

  29. A. Safari, R.E. Newnham, L.E. Cross and W.A. Schulze, Perforated PZT-polymer composites for piezoelectric transducer applications. Ferroelectrics 41 (1982) 197–202.

    Google Scholar 

  30. K. Hikita, K. Yamada, M. Nishioka and M. Ono, Effect of porous structure to piezoelectric properties of PZT ceramics. Japan J. Appl. Phys. 22 (1983) 64–66.

    Google Scholar 

  31. R.E. Newnham, Ferroelectric composites. Japan J. Appl. Phys. 24 (1985) 16–17.

    Google Scholar 

  32. S.M. Pilgrimand and R.E. Newnham, 3–0 a new composite connectivity. Mater. Res. Bull. 21 (1986) 1447–1454.

    Google Scholar 

  33. R.Y. Ting, The hydroacoustic behavior of piezoelectric composite materials. Ferroelectrics 102 (1990) 215–224.

    Google Scholar 

  34. H.S. Paul and V.K. Nelson, Flexural vibration of piezoelectric composite hollow cylinder. J. Acoust. Soc. Amer. 99 (1996) 309–313.

    Google Scholar 

  35. Q.M. Zhang, H. Wang, J. Zhao, J.T. Fielding, R.E. Newnham and L.E. Cross, A high sensitivity hydrostatic piezoelectric transducer based on transverse piezoelectric mode honeycomb ceramic composites. IEEE Ultrasonic Ferroelec. Freq. Contr. 43 (1996) 36–43.

    Google Scholar 

  36. H.G. Lee and H.G. Kim, Influence of microstructures on the dielectric and piezoelectric properties of lead zirconate titanate-polymer composites. J. Am. Ceram. Soc. 72 (1989) 938–942.

    Google Scholar 

  37. B. Budiansky, On the elastic moduli of some heterogeneous materials. J. Mech. Phys. Solids 13 (1965) 223–227.

    Google Scholar 

  38. T. Mori and T. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusion. Acta Metallurgica 21 (1973) 517–574.

    Google Scholar 

  39. W.F. Deeg, The analysis of dislocation, crack and inclusion problems in piezoelectric solids. PhD Thesis of Stanford University, USA (1980).

    Google Scholar 

  40. T.Y. Chen, Green function and the non-uniform transformation problem in a piezoelectric medium. Mech. Res. Comm. 20 (1993) 271–278.

    Google Scholar 

  41. T.Y. Chen, Some exact relations of inclusions in piezoelectric media. Internat. J. Engng. Sci. 32 (1994) 553–556.

    Google Scholar 

  42. J.H. Huang and J.S. Yu, Electroelastic Eshelby tensors for an ellipsoidal piezoelectric inclusion. Composites Engineering 4 (1994) 1169–1182.

    Google Scholar 

  43. H.J. Bunge, Texture Analysis in Materials Science. Butterworth, London (1982).

    Google Scholar 

  44. B. Jaff, W.R. Cook and H. Jaff, Piezoelectric Ceramics. Academic Press, New York (1971).

    Google Scholar 

  45. M.E. Lines and A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials. Oxford Univ. Press, Oxford (1977).

  46. T. Mura, Micromechanics of Defects in Solids. Martinus Nijhoff, The Hague (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, DN., Jiang, B. & Hwang, KC. A Model for Predicting Effective Properties of Piezocomposites with Non-piezoelectric Inclusions. Journal of Elasticity 62, 95–118 (2001). https://doi.org/10.1023/A:1011690908826

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011690908826

Navigation