Skip to main content
Log in

Conceptual Spaces for Computer Vision Representations

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

A framework for high-level representations in computer vision architectures is described. The framework is based on the notion of conceptual space. This approach allows us to define a conceptual semantics for the symbolic representations of the vision system. In this way, the semantics of the symbols can be grounded to the data coming from the sensors. In addition, the proposed approach generalizes the most popular frameworks adopted in computer vision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ardizzone, E., Chella, A., Frixione, M. & Gaglio, S. (1992). Integrating Subsymbolic and symbolic Processing in Artificial Vision. Journal of Intelligent Systems 1(4): 273-308.

    Google Scholar 

  • Arkin, R. (1990). Integrating Behavioral, Perceptual, and World Knowledge in Reactive Navigation. Robotics and Autonom. Systems 6: 105-122.

    Google Scholar 

  • Barr, A. (1981). Superquadrics and Angle-Preserving Transformations. IEEE Computer Graphics and Applications 1: 11-23.

    Google Scholar 

  • Biederman, I. (1985). Human Image Understanding: Recent Research and a Theory. Computer Vision, Graphics and Image Processing 32: 29-73.

    Google Scholar 

  • Bishop, C. (1995). Neural Networks for Pattern Recognition. Oxford University Press: Oxford, USA.

    Google Scholar 

  • Chella, A., Frixione, M. & Gaglio, S. (1997). A Cognitive Architecture for Artificial Vision. Artif. Intell. 89: 73-111.

    Google Scholar 

  • Chella, A., Frixione, M. & Gaglio, S. (1998). An Architecture for Autonomous Agents Exploiting Conceptual Representations. Robotics and Autonomous Systems 25(3-4): 231-240.

    Google Scholar 

  • Chella, A., Frixione, M. & Gaglio, S. (1999). A Conceptual Representation of the Actions of an Autonomous Robot. In Proceedings of the Third European Workshop on Advanced Mobile Robots (EUROBOT' 99), 97-104. Los Alamitos, CA: IEEE Computer Society Press.

    Google Scholar 

  • Conway, L., Volz, R. & Walker, M. (1990). Teleautonomous Systems: Projecting and Coordinating Intelligent Actions at a Distance. IEEE Trans. on Robotics and Automation 6(2): 146-158.

    Google Scholar 

  • Duda, R. & Hart, P. (1973). Pattern Classification and Scene Analysis. Wiley: New York.

    Google Scholar 

  • Edelman, S. (1998). Representation is Representation of Similarity. Behavioral and Brain Sciences 21: 449-498.

    Google Scholar 

  • Edelman, S. (1999). Representation and Recognition in Vision. MIT Press, Bradford Books: Cambridge, MA.

    Google Scholar 

  • Essa, I. (1999). Computers Seeing People. AI Magazine 20(2): 69-82.

    Google Scholar 

  • Fernyhough, J., Cohn, A. & Hogg, D. (2000). Constructing Qualitative Event Models Automatically from Video Input. Image and Vision Computing 18(2): 81-103.

    Google Scholar 

  • Fleck, M. (1996). The Topology of Boundaries. Artif. Intell. 80(1): 1-27.

    Google Scholar 

  • Gärdenfors, P. (2000). Conceptual Spaces. MIT Press, Bradford Books: Cambridge, MA.

    Google Scholar 

  • Gupta, A. & Bajcsy, R. (1993). Volumetric Segmentation of Range Images of 3D Objects Using Superquadric Models. CVGIP: Image Understanding 58(3): 302-326.

    Google Scholar 

  • Haag, M. & Nagel, H. (2000). Incremental Recognition of Traffic Situations from Video Image Sequences. Image and Vision Computing 18(2): 137-153.

    Google Scholar 

  • Heijmans, H. & Tuzikov, A. (1998). Similarity and Symmetry Measures for Convex Shapes Using Minkowski Addition. IEEE Trans. Pat. Anal. Mach. Intel. 20(9): 980-993.

    Google Scholar 

  • Horn, B. (1986). Robot Vision. MIT Press.

  • Howarth, R. & Buxton, H. (2000). Conceptual Descriptions from Monitoring and Watching Image Sequences. Image and Vision Computing 18(2): 105-135.

    Google Scholar 

  • Kleinfeld, D. & Sompolinsky, H. (1989). Associative Network Models for Central Pattern Generators. In Koch, C. & Segev, I. (eds.) Methods in Neuronal Modeling, 195-246. MIT Press, Bradford Books: Cambridge, MA.

    Google Scholar 

  • Leonardis, A., Jaklic, A. & Solina, F. (1997). Superquadrics for Segmentation and Modeling Range Data. IEEE Trans. Patt. Anal. Mach. Intell. 19(11): 1289-1295.

    Google Scholar 

  • Marr, D. (1982). Vision. W.H. Freeman and Co.: New York.

    Google Scholar 

  • Marr, D. & Nishihara, H. (1978). Representation and Recognition of the Spatial Organization of Three-Dimensional Shapes. Proc. R. Soc. Lond. B 200: 269-294.

    Google Scholar 

  • Maver, J. & Bajcsy, R. (1993). Occlusions as a Guide for Planning the Next View. IEEE Trans. Pat. Anal. Mach. Intel. 15(5): 417-433.

    Google Scholar 

  • Minsky, M. & Papert, S. (1969). Perceptrons. MIT Press: Cambridge, MA.

    Google Scholar 

  • Mortenson, M. (1997). Geometric Modeling, 2nd edn. J. Wiley and Sons: New York.

    Google Scholar 

  • Mukerjee, A., Gupta, K., Nautiyal, S., Singh, M. & Mishra, N. (2000). Conceptual Description of Visual Scenes from Linguistic Models. Image and Vision Computing 18(2): 173-187.

    Google Scholar 

  • Pentland, A. (1986). Perceptual Organization and the Representation of Natural Form. Artif. Intell. 28: 293-331.

    Google Scholar 

  • Reiter, R. (1999). Knowledge in Action. Logical Foundations for Describing and Implementing Dynamical Systems. Technical report, Department of Computer Science, University of Toronto, CA.

  • Rosch, E. (1975). Cognitive Representations on Semantic Categories. Journal of Experimental Psychology: General 104: 192-233.

    Google Scholar 

  • Scholkopf, B., Burges, C. & Smola, A. (eds.) (1999). Advances in Kernel Methods: Support Vector Learning. MIT Press: Cambridge, MA.

    Google Scholar 

  • Shepard, R. (1987). Toward a Universal Law of Generalization for Psychological Science. Science 237: 1317-1323.

    Google Scholar 

  • Solina, F. & Bajcsy, R. (1990). Recovery of Parametric Models from Range Images: The Case for Superquadrics with Global Deformations. IEEE Trans. Patt. Anal. Mach. Intell. 12(2): 131-146.

    Google Scholar 

  • Tarr, M. & Black, M. (1994). A Computational and Evolutionary Perspective on the Role of Representation in Vision. CVGIP: Image Understanding 60(1): 65-73.

    Google Scholar 

  • Ullman, S. (1996). High-level Vision. MIT Press: Cambridge, MA.

    Google Scholar 

  • Whaite, P. & Ferrie, F. (1991). From Uncertainty to Visual Exploration. IEEE Trans. Patt. Anal. Mach. Intell. 13(10): 1038-1049.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chella, A., Frixione, M. & Gaglio, S. Conceptual Spaces for Computer Vision Representations. Artificial Intelligence Review 16, 137–152 (2001). https://doi.org/10.1023/A:1011658027344

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011658027344

Navigation