Automation and Remote Control

, Volume 62, Issue 9, pp 1417–1427 | Cite as

Piecewise-Linear Lyapunov Functions and Localization of Spectra of Stable Matrices

  • O. N. Bobyleva
  • E. S. Pyatnitskii


A relationship between the number of generators of a piecewise-linear Lyapunov function of an asymptotically stable linear stationary system and the characteristics of the domain containing the spectrum of the matrix of the system is established.


Mechanical Engineer System Theory Stationary System Lyapunov Function Stable Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gantmakher, F.R., Teoriya matrits (Theory of Matrices), Moscow: Nauka, 1966. Translated under the title The Theory of Matrices, New York: Chelsea, 1959.Google Scholar
  2. 2.
    Pontryagin, L.S., Obyknobennye diffrentsial'nye uravneniya (Ordinary Differential Equations), Moscow: Fizmatgiz, 1961.Google Scholar
  3. 3.
    Molchanov, A.P. and Pyatnitskii, E.S., The Lyapunov Functions Defining Necessary and Sufficient Conditions for the Absolute Stability of Nonlinear Time-Varying Control Systems. I, II, III, Avtom. Telemekh., 1986, nos. 3-5, pp. 63-73, 5-15, 38-49.Google Scholar
  4. 4.
    Molchanov, A.P. and Pyatnitskii, E.S., A Stability Criterion and Selector Linear Differential Equations, Dokl. Akad. Nauk SSSR, 1987, vol. 297, no. 1, pp. 37-40.Google Scholar
  5. 5.
    Molchanov, A.P. and Pyatniskiy, Ye.S., Criteria of Asymptotic Stability of Differential and Difference Inclusions Encountered in Control Theory, Syst. Control Lett., 1989, no. 13, pp. 59-64.Google Scholar
  6. 6.
    Rockafellar, R.T., Convex Analysis, Princeton: Princeton Univ. Press, 1970. Translated under the title Vypuklyi analiz, Moscow: Mir, 1973.Google Scholar
  7. 7.
    Nikaido, K., Convex Structures and Economic Theory, New York: Academic, 1968. Translated under the title Vypuklye struktury i matematicheskaya economika, Moscow: Mir, 1972.Google Scholar
  8. 8.
    Hirsch, A. Sur les racines d'une équation fondamentale, Acta Math., 1902, no. 25, pp. 367-370.Google Scholar
  9. 9.
    Schur, I., Ñber die Charakteristischen Wurzeln einer linearen Substitution mit einer Anwendung auf die Theorie der Integralgleichungen, Math. Ann., 1909, no. 65, pp. 488-510.Google Scholar
  10. 10.
    Brown, E.T., The Characteristic Roots of a Matrix, Bull. Am. Math. Soc., 1930, no. 36, pp. 705-710.Google Scholar
  11. 11.
    Perron, O., Theorie der algebraischem Cleichungen, Berlin: De Gruyter, 1933.Google Scholar
  12. 12.
    Brauer, A., Limits for the Characteristic Roots of a Matrix, Duke Math. J., 1946, no. 13, pp. 387-395.Google Scholar
  13. 13.
    Desplanques, J., Théoréme d'algébre, J. Math. Spec., 1887, no. 9, pp. 12-13.Google Scholar
  14. 14.
    Gershgorin, S.A., Ñber die Abgrenzung der Eigenwerte einer Matrix, Izv. Akad. Nauk SSSR, Ser. Fiz. Mat., 1931, pp. 749-754.Google Scholar
  15. 15.
    Fan Ky, Note on Circular Disks Containing the Eigenvalues of a Matrix, Duke Math. J., 1958, no. 25, pp. 441-445.Google Scholar
  16. 16.
    Frobenius, G., Ñber Matrizen aus positiven Elementen, Sitzungsber: Kgl. Preuss. Akad. Wiss., 1908, pp. 471-476.Google Scholar
  17. 17.
    Marcus, M. and Minc, H., A Survey of Matrix Theory and Matrix Inequalities, Boston: Allyn and Bacon, 1964. Translated under the title Obzor po teorii matrits i matrichnykh nepavenstv, Moscow: Nauka, 1972.Google Scholar
  18. 18.
    Horn, R. and Johnson, C., Matrix Analysis, New York: Cambridge Univ. Press, 1985.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2001

Authors and Affiliations

  • O. N. Bobyleva
    • 1
  • E. S. Pyatnitskii
    • 2
  1. 1.Peoples' Friendship UniversityMoscowRussia
  2. 2.Trapeznikov Institute of Control SciencesRussian Academy of SciencesMoscowRussia

Personalised recommendations