Skip to main content
Log in

Biodegradation of Chitosan-Gellan and Poly(L-lysine)-Gellan Polyion Complex Fibers by Pure Cultures of Soil Filamentous Fungi

  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The degradation of two kinds of polyion complex (PIC) fibers, chitosan-gellan (CGF), and poly(L-lysine)-gellan (LGF) fibers, by seven species of soil filamentous fungi has been investigated. All of the pure-line soil filamentous fungi, Aspergillus oryzae, Penicillium caseicolum, P. citrinum, Mucor sp., Rhizopus sp., Curvularia sp., and Cladosporium sp. grew on the two fiber materials. Microscopic observation of the biodegradation processes revealed that P. caseicolum on the CGF and LGF grew, along with the accompanying collapse of the fiber matrices. In the biochemical oxygen-demand (BOD) test, the biodegradation of the LGF by P. caseicolum and Curvularia sp. exceeded 97% carbon dioxide generation and the biodegradation of the CGF by A. oryzae was 59%. These results might offer some clues to the applications of the PIC fibers as environmentally biodegradable materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. Yamamoto, H. Tanisho, S. Ohara, and A. Nishida (1992) Intern. J. Biol. Macromol. 14, 66–72.

    Google Scholar 

  2. H. Yamamoto and H. Tanisho (1993) Mater. Sci. Eng. 1, 45–51.

    Google Scholar 

  3. H. Yamamoto and Y. Hirata (1995) Macromolecules 28, 6701–6704.

    Google Scholar 

  4. K. Ohkawa, T. Kitsuki, M. Amaike, H. Saitoh, and H. Yamamoto (1998) Biomaterials 19, 1855–1860.

    Google Scholar 

  5. H. Yamamoto, Y. Hirata,and H. Tanisho (1994) Intern. J. Biol. Macromol. 16, 81–85.

    Google Scholar 

  6. H. Yamamoto and Y. Hirata (1995) Polymer Gels Networks 3, 71–84.

    Google Scholar 

  7. H. Yamamoto, M. Amaike, and H. Saitoh (1995) Biomimetics 3, 123–129.

    Google Scholar 

  8. H. Yamamoto and M. Amaike (1997) Macromolecules 30, 3936–3937.

    Google Scholar 

  9. H. Yamamoto, M. Amaike, H. Saitoh, and Y. Sano (2000) Mater. Sci. Eng. C7, 143–147.

    Google Scholar 

  10. H. Yamamoto, T. Kituki, A. Nishida, K. Asada, and K. Ohkawa (1999) Macromolecules 32, 1055–1061.

    Google Scholar 

  11. M. Amaike, Y. Senoo, and H. Yamamoto (1998) Macromol. Rapid Commun. 19, 287–289.

    Google Scholar 

  12. H. Yamamoto, C. Horita, Y. Senoo, A. Nishida, and K. Ohkawa (2001) J. Appl. Polymer Sci. 79, 437–446.

    Google Scholar 

  13. H. Yamamoto and Y. Senoo (2000) Macromol. Chem. Phys. 201, 84–92.

    Google Scholar 

  14. K. Ohkawa, Y. Takahashi, and H. Yamamoto (2000) Macromol. Rapid Commun. 21, 223–225.

    Google Scholar 

  15. G. Sanderson (1990) in P. Harris (Ed.), Food Gels, Elsevier Applied Sci, London, pp. 201–232.

    Google Scholar 

  16. W. Gibson (1992) in A. Imeson (Ed.), Thickening and Gelling Agents for Food, Chapman & Hall, London, pp. 227–249.

    Google Scholar 

  17. R. A. A. Muzzarelli (1977) Chitin, Pergamon, Oxford.

  18. H. Silman and M. Sela (1967) in G. Fasman (Ed.), Poly-a-Amino Acids, Marcel Dekker, New York, pp. 605–673.

    Google Scholar 

  19. H. Yamamoto and J. Yang (1974) Biopolymers 13, 1109–1116.

    Google Scholar 

  20. M. Hatano and M. Yoneyama (1970) J. Amer. Chem. Soc. 92, 1392–1395.

    Google Scholar 

  21. H. Yamamoto and M. Amaike (1995), Proc. 4th Jpn. Intern. Soc. Advan. Mater. Process Eng. 589–594.

  22. Y. Doi, K. Kasuya, H. Abe, N. Koyama, S. Ishiwatari, K. Takagi, and Y. Yoshida (1996) Polymer Degrad. Stab. 51, 281–286.

    Google Scholar 

  23. K. Kasuya, K. Takagi, S. Ishiwatari, Y. Yoshida, and Y. Doi (1998) Polymer Degrad. Stab. 59, 327–332.

    Google Scholar 

  24. B. R. Davidson, A. Gertler, and T. Hofmann (1975) Biochem. J. 147, 45–53.

    Google Scholar 

  25. E. Ichishima, M. Emi, E. Majima, Y. Mayumi, H. Kumagai, K. Hayashi, and K. Tomoda (1982) Biochim. Biophys. Acta 700, 247–253.

    Google Scholar 

  26. K. Gomi, K. Arikawa, N. Kamiya, K. Kitamoto, and C. Kumagai (1993) Biosci. Biotechnol. Biochem. 57, 1095–1100.

    Google Scholar 

  27. M. V. Ramesh, T. D. Sirakova, and P. E. Kolattukudy (1995) Gene 165, 121–125.

    Google Scholar 

  28. M. M. Prasad and H. N. P. Singh (1995) Lett. Appl. Microbiol. 21, 235–236.

    Google Scholar 

  29. H. Sharma (1987) Trans. Br. Mycol. Soc. 88, 122–125.

    Google Scholar 

  30. J. Rodriguez, M. J. Santos, P. J. L. Copa, and L. M. I. Perez (1993) Lett. Appl. Microbiol. 16, 69–71.

    Google Scholar 

  31. V. H. Varel, K. K. Kreikemeier, H. J. G. Jung, and R. D. Hatfield (1993) Appl. Environ. Microbiol. 59, 3171–3176.

    Google Scholar 

  32. K. Lynn and I. Sutherland (1994) Microbiology 140, 3007–3013.

    Google Scholar 

  33. W. Hashimoto, T. Inose, H. Nakajima, N. Sato, S. Kimura, and K. Murata (1996) Appl. Environ. Microbiol. 62, 1475–1477.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohkawa, K., Yamada, M., Nishida, A. et al. Biodegradation of Chitosan-Gellan and Poly(L-lysine)-Gellan Polyion Complex Fibers by Pure Cultures of Soil Filamentous Fungi. Journal of Polymers and the Environment 8, 59–66 (2000). https://doi.org/10.1023/A:1011517903510

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011517903510

Navigation