The Ramanujan Journal

, Volume 5, Issue 1, pp 53–63

New Congruences for the Partition Function

  • Rhiannon L. Weaver
Article

Abstract

Let p(n) denote the number of unrestricted partitions of a non-negative integer n. In 1919, Ramanujan proved that for every non-negative n\(\begin{gathered} p(5 + 4) \equiv 0(\bmod 5), \hfill \\ p(7n + 5) \equiv 0(\bmod 7), \hfill \\ p(11n + 6) \equiv 0(\bmod 11). \hfill \\ \end{gathered} \)

Recently, Ono proved for every prime m ≥ 5 that there are infinitely many congruences of the form p(An+B)≡0 (mod m). However, his results are theoretical and do not lead to an effective algorithm for finding such congruences. Here we obtain such an algorithm for primes 13≤m≤31 which reveals 76,065 new congruences.

partition function congruences 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Andrews, The Theory of Partitions, Cambridge University Press, New York, 1984.Google Scholar
  2. 2.
    A.O.L. Atkin and J.N. O'Brien, “Some properties of p(n) and c(n) modulo powers of 13,” Trans. Amer. Math. Soc. 126 (1968) 442–459.Google Scholar
  3. 3.
    L. Guo and K. Ono, “The partition function and the arithmetic of certain modular L-functions,” International Math. Research Notes, 21 (1999) 1179–1197.Google Scholar
  4. 4.
    G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, 1980.Google Scholar
  5. 5.
    N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, New York, 1984.Google Scholar
  6. 6.
    K. Ono, “The distribution of the partition function modulo m,” Annals of Math. 151 (2000) 293–307.Google Scholar
  7. 7.
    S. Ramanujan, “Congruence properties of partitions,” Proc. London Math Soc. 19(2) (1919) 207–210.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Rhiannon L. Weaver
    • 1
  1. 1.Carnegie Mellon UniversityPittsburgh

Personalised recommendations