Skip to main content
Log in

Linear Networks and Convex Polytopes

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

It is shown that the set [G,ϕ]Γ of immersed linear networks in \(\mathbb{R}^n \) that are parallel to a given immersed linear network \(\Gamma :G\to\mathbb{R}^n \) and have the same boundary ϕ as Γ is a convex polyhedral subset of the configuration space of movable vertices of the graph G. The dimension of [G,ϕ]Γ is calculated, and the number of its maximal faces is estimated. As an application, the spaces of all locally minimal and weighted minimal networks with fixed boundary and topology in \(\mathbb{R}^n \) are described. Bibliography: 21 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. Hildebrandt and A. Tromba, The Parsimonious Universe, Copernicus, Springer-Verlag (1996).

    Google Scholar 

  2. F. K. Hwang, D. Richards, and P. Winter, The Steiner Tree Problem, Elsevier (1992).

  3. Z. A. Melzak, Companion to Concrete Mathematics, Wiley-Interscience, New York (1973).

    Google Scholar 

  4. Dao Chong Thi and A. T. Fomenko, Minimal Surfaces and the Plateau Problem [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  5. A. T. Fomenko, Variational Problems in Topology, New York (1990).

  6. A. T. Fomenko, The Plateau Problem, New York (1989).

  7. A. T. Fomenko and A. A. Tuzhilin, Elements of Geometry and Topology of Minimal Surfaces in Three-Dimensional Space [in Russian], Moscow (1991).

  8. A. O. Ivanov, “Geometry of planar locally minimal binary trees, ” Mat. Sb., 186, 45–76 (1995).

    Google Scholar 

  9. A. O. Ivanov, “Planar weighted minimal binary trees, ” Fund. Prikl. Mat., 2, 511–562 (1996).

    Google Scholar 

  10. A. O. Ivanov and A. A. Tuzhilin, “Solution of the Steiner problem for convex boundaries, ” Usp. Mat. Nauk, 45, No. 2, 207–208 (1990).

    Google Scholar 

  11. A. O. Ivanov and A. A. Tuzhilin, “The Steiner problem for convex boundaries, or flat minimal networks, ” Mat. Sb., 182, 1813–1844 (1991).

    Google Scholar 

  12. A. O. Ivanov and A. A. Tuzhilin, “Geometry of minimal networks and the one-dimensional Plateau problem, ” Usp. Mat. Nauk, 47, No. 2, 53–115 (1992).

    Google Scholar 

  13. A. O. Ivanov and A. A. Tuzhilin, “The Steiner problem for convex boundaries, I, II; the regular case, ” Adv. Sov. Math., 15, 15–92, 93–131 (1993).

    Google Scholar 

  14. A. O. Ivanov and A. A. Tuzhilin, Minimal Networks. The Steiner Problem and Its Generalizations, CRC Press, Boca Raton, Florida (1994).

    Google Scholar 

  15. A. O. Ivanov and A. A. Tuzhilin, “Topologies of planar locally minimal binary trees, ” Usp. Mat. Nauk, 49, No. 6, 1910–1920 (1994).

    Google Scholar 

  16. A. O. Ivanov and A. A. Tuzhilin, “Weighted minimal two-trees, ” Usp. Mat. Nauk, 50, No. 3, 155–156 (1995).

    Google Scholar 

  17. A. O. Ivanov and A. A. Tuzhilin, “Geometry of planar linear trees, ” Usp. Mat. Nauk, 51, 161–162 (1996).

    Google Scholar 

  18. A. O. Ivanov and A. A. Tuzhilin, “Twisting number of planar linear trees, ” Mat. Sb., 187, No. 8, 41–92 (1996).

    Google Scholar 

  19. A. O. Ivanov and A. A. Tuzhilin, “Geometry of the set of minimal networks with given boundary and topology, ” Izv. Ross. Akad. Nauk, Ser. Mat., 61, No. 6, 119–152 (1997).

    Google Scholar 

  20. A. O. Ivanov and A. A. Tuzhilin, “Minimal binary trees with regular boundary: the case of skeletons with four ends, ” Mat. Sb, 187, No. 4, 117–159 (1996).

    Google Scholar 

  21. A. A. Tuzhilin, “Minimal binary trees with regular boundary: the case of skeletons with five ends, ” Mat. Zametki, 61, 907–921 (1997).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, A.O., Tuzhilin, A.A. Linear Networks and Convex Polytopes. Journal of Mathematical Sciences 104, 1283–1288 (2001). https://doi.org/10.1023/A:1011377730044

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011377730044

Keywords

Navigation