Russian Physics Journal

, Volume 44, Issue 2, pp 178–182 | Cite as

Transformation of Carbon Nanotubes to Diamond at High Pressure and High Temperature

  • W. K. Wang
  • L. M. Cao


The synthesis of diamond at high pressure and high temperature and the discovery of fullerenes and carbon nanotubes are among the most important achievements in carbon science. In the present work, we report the synthesis of diamond from carbon nanotubes at 4.5 GPa and 1300°C. Under these conditions, no diamond crystals were obtained when graphite was used as the starting material. The detailed investigation shows that at high pressure and high temperature carbon nanotubes first transform into quasi-spherical onion-like structures and then into diamond crystals. Our work suggests that carbon nanotubes can be used for the synthesis of high-quality diamond crystals at lower pressure and temperature.


  1. 1.
    F. P. Bundy, H. T. Hall, H. M. Strong, and R. H. Wentorf, Jr. Nature (London), 176, 51 (1955).Google Scholar
  2. 2.
    H. P. Bovenkerk, F. P. Bundy, H. T. Hall, H. M. Strong, and R. H. Wentorf, Jr. Nature (London), 184, 1094 (1959).Google Scholar
  3. 3.
    H. W. Kroto, J. R. Heath, S. C. 0'Brien, R. F. Curl, and R. E. Smally, Nature (London), 318, 162 (1985).Google Scholar
  4. 4.
    S. lijima, Nature (London), 354, 56 (1991).Google Scholar
  5. 5.
    M. S. Dresselhaus, G. Dresselhaus, and P. C. Ekiund, Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego (1996).Google Scholar
  6. 6.
    Y. Iwasa, T. Arima, R. M. Fleming, T. Siegrist, 0. Zhou, R. C. Haddon, L. J. Rothberg, K. B. Lyons, H. L. Carter, Jr., A. F. Hebard, R. Tycko, G. Dabbagh, J. J. Krajewski, G. A. Thomas, and T. Yagi, Science, 264, 1570 (1994).Google Scholar
  7. 7.
    M. Nufiez-Regueiro, L. Marques, J-L. Hodeau, 0. Bethoux, and M. Perroux. Phys. Rev. Lett., 74, 278 (1995).Google Scholar
  8. 8.
    L. Marques, J-L. Hodeau, M. Nunez-Regueiro, and M. Perroux, Phys. Rev., B54, R12633 (1996).Google Scholar
  9. 9.
    M. Nufiez-Regueiro, P. Monceau, and J-L. Hodeau, Nature (London), 355, 237 (1992).Google Scholar
  10. 10.
    Y. Z. Ma, G. T. Zou, H. B. Yang, and J. F. Meng, Appl. Phys. Lett., 65, 822 (1994).Google Scholar
  11. 11.
    M. Zhang, D. W. He, X. Y. Zhang, L. Ji, B. Q. Wei, D. H. Wu, F. X. Zhang, Y. F. Xu, and W. K. Wang, Carbon, 35, 1671 (1997).Google Scholar
  12. 12.
    Y. Q. Zhu, T. Sekine, T. Kobayashi, E. Takazawa, M. Terrones, and H. Terrones, Chem. Phys. Lett., 287, 689 (1998).Google Scholar
  13. 13.
    Hamwi, H. Alvergnat, S. Bonnamy, and F. Beguin, Carbon, 35, 723 (1997).Google Scholar
  14. 14.
    M. Monthioux, and J. G. Lavin, Carbon, 32, 335 (1994).Google Scholar
  15. 15.
    D. Ugarte, Nature, 359, 707 (1992).Google Scholar
  16. 16.
    D. Ugarte, Chem. Phys. Lett., 207, 473 (1993).Google Scholar
  17. 17.
    F. Banhart, and P. M. Ajayan, Nature, 382, 433 (1996).Google Scholar
  18. 18.
    F. Banhart, T. Fuller, Ph. Redlich, and P. M. Ajayan, Chem. Phys. Lett., 269, 349 (1997).Google Scholar
  19. 19.
    P. Wesolowski, Y. Lyutovich, F. Banhart, H. D. Carstanjen, and H. Kronmuller, Appl. Phys. Lett., 71, 1948 (1997).Google Scholar
  20. 20.
    F. Banhart, Rep. Prog. Phys., 62, 1181 (1999).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • W. K. Wang
    • 1
  • L. M. Cao
    • 1
  1. 1.Institute of Physics, Chinese Academy of SciencesChina

Personalised recommendations