Advertisement

Group Decision and Negotiation

, Volume 10, Issue 4, pp 317–329 | Cite as

A Distance-Based Collective Weak Ordering

  • Slim Ben Khelifa
  • Jean-Marc Martel
Article

Abstract

A group decision-making approach can be seen as a two stage process. The first stage allows for multi-cirteria evaluation of the alternatives and the second aims at deriving a collective weak ordering from the partial orderings supplied by the members after the first stage. The problem of combining the weak orderings to form a collective ranking is investigated. An axiomatic structure relating to the concept of distance between binary relations is developed. An algorithm for deriving the collective weak ordering is proposed, based on the idea of ranking first the least dominated alternatives.

group decision-making multi-criteria decision aid outranking methods distance weak ordering partial ordering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong, R. D.,W. D. Cook, and L. M. Seiford. (1982). “Priority Ranking and ConsensusFormation, ” Management Science 28, 638–648.Google Scholar
  2. Arrow, K. J. (1951) (2nd edition 1963). Social Choiceand Individual Values. New York: Wiley.Google Scholar
  3. Blin, J. M. (1976). “A Linear Assignment Formulation for theMultiattribute Decision Problem, ” RAIRO 10, 21–32.Google Scholar
  4. Bogart, K. P. (1975). “Preference Structures II:Distance Between Transitive Preference Relations, ” Journal of Applied Mathematics 29, 254–262.Google Scholar
  5. Borda, J.-Ch. (1781). Mémoire sur les élections au scrutin. Paris: Mémoires de l'Académie des Sciences.Google Scholar
  6. Brans, J. P., B. Mareshal, and Ph. Vincke. (1984). “PROMETHEE: A New Family of Outranking Methods in Multicriteria Analysis, ” in J. P. Brans (ed.), Operational Research’ 84. North-Holland: Elsevier Science Publishers, pp. 408–421.Google Scholar
  7. Condorcet, M. J. A. M., and Marquis De Caritat. (1785). Essai sur l'application del'analyse à la probabilité des décisions rendues à la pluralité des voies. Paris: Imprimerie Royale.Google Scholar
  8. Cook, W. D.,M. Kress, and L. M. Seiford. (1986a). “An Axiomatic Approach to Distance on Partial Ordering, ” RAIRO 10, 115–122.Google Scholar
  9. Cook, W. D., M. Kress, and L. M. Seiford. (1986b). “Information and Preference in Partial Orders:A Bimatrix Representation, ” Psychometrika 51, 197–207.Google Scholar
  10. Cook, W.D., and L. M. Seiford. (1978). “Priority Ranking and Consensus Formation, ”Management Science 24, 1721–1732.Google Scholar
  11. Coughlan, B. A. K.,and C. L. Armour. (1992). “Group Decision-Making for Natural Resources Management Applications, ” Resource Publication 185, U.S. Department of the Interior, Fish and Wildlife Service.Google Scholar
  12. Kemeny, J. G., and L. J. Snell.(1962). “Preference Ranking: An Axiomatic Approach, ” in Mathematical Models in the Social Sciences. New York: Ginn, pp. 9–23.Google Scholar
  13. Roy, B. (1978). “ELECTRE III: algorithme de classement basé sur une représentationfloue des préferences en présence de critères multiples, ” Cahiers du CERO 20, 3–24.Google Scholar
  14. Roy, B., and J.C. Hugonnard. (1982). “Classement des prolongements de métro en banlieue parisienne (presentation d'une méthode originale), ” Cahiers du CERO 23, 153–171.Google Scholar
  15. Roy, B., and R. Slowinski. (1993). “Criterion ofDistance Between Technical Programming and Socio-Economic Priority, ” RAIRO 27, 45–60.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Slim Ben Khelifa
    • 1
  • Jean-Marc Martel
    • 2
  1. 1.Ecole des Sciences Economiques et CommercialesTunisTunisie
  2. 2.Faculté des Sciences de l'AdministrationUniversité LavalSte-FoyCanada

Personalised recommendations