Skip to main content
Log in

Surface Morphological Evolution of Thin Films Under Stress and Capillary Forces

  • Published:
Interface Science

Abstract

Holes and hillocks can commonly be observed on the surface of thin films after thermal processing. For films deposited on a substrate with a different coefficient of thermal expansion, strains due to thermal expansion mismatch can produce very large stresses. While capillary forces tend to produce a thermal groove at a grain boundary (GB), compressive and tensile stresses can form, respectively, a ridge or a canal at the GB. These phenomena can strongly influence mobility of a GB. The formation of a canal enhances the potential for pinning the GB, whereas the formation of a ridge tends to repel the GB.

After a short overview of the theory, analytical and numerical solutions for surface profiles of static and travelling GBs under stress are presented. The results of the computed profiles are compared to experimental surface morphologies in aluminum thin film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.W. Mullins, Journal of Applied Physics 28, 333 (1957).

    Google Scholar 

  2. F.Y. Génin, W.W. Mullins, and P. Wynblatt, Acta Metallurgica et Materialia 41, 3541 (1993).

    Google Scholar 

  3. F.Y. Génin, Journal of Applied Physics 77, 5130 (1995).

    Google Scholar 

  4. S.K. Lahiri, Journal of Applied Physics 41, 3172 (1970).

    Google Scholar 

  5. S.K. Lahiri, Journal of Applied Physics 46, 2791 (1975).

    Google Scholar 

  6. H.C.W. Huang, P. Chaudhari, C.J. Kircher, and M. Murakami, Philosophical Magazine A (Physics of Condensed Matter, Defects and Mechanical Properties) 54, 583 (1986).

    Google Scholar 

  7. J.Y. Kim and R.E. Hummel, Physica Status Solidi A 122, 255 (1990).

    Google Scholar 

  8. J.Y. Kim and R.E. Hummel, Physica Status Solidi A 124, 211 (1991).

    Google Scholar 

  9. U. Smith, N. Kristensen, F. Ericson, and J.A. Schweitz, in Mechanical Behavior of Thin Films Topical Conference, (1991),Vol. 9, p. 2527.

    Google Scholar 

  10. N. Kristensen, F. Ericson, J.A. Schweitz, and U. Smith, Thin Solid Films 197, 67 (1991).

    Google Scholar 

  11. N. Kristensen, F. Ericson, J.A. Schweitz, and U. Smith, Journal of Applied Physics 69, 2097 (1991).

    Google Scholar 

  12. F. Ericson, N. Kristensen, J.A. Schweitz, and U. Smith, Journal of Vacuum Science & Technology B (Microelectronics Processing and Phenomena) 9, 58 (1991).

    Google Scholar 

  13. D. Gerth, D. Katzer, and M. Krohn, Thin Solid Films 208, 67 (1992).

    Google Scholar 

  14. R.A. Schwarzer and D. Gerth, J. Electron. Mater. 22, 607 (1993).

    Google Scholar 

  15. D. Gerth, D. Katzer, and R.A. Schwarzer, Physica Status Solidi A 146, 299 (1994).

    Google Scholar 

  16. B. Cao Martin, C.J. Tracy, J.W. Mayer, and L.E. Hendrickson, Thin Solid Films 271, 64 (1995).

    Google Scholar 

  17. Y. Liu, R. Singh, K. Poole, R.J. Diefendorf, J. Harriss, and K. Cannon, Journal of Vacuum Science & Technology B (Microelectronics and Nanometer Structures) 15, 1990 (1997).

    Google Scholar 

  18. A.T. Voutsas, Y. Hibino, R. Pethe, and E. Demaray, Journal of Vacuum Science & Technology A (Vacuum, Surfaces, and Films) 16, 2668 (1998).

    Google Scholar 

  19. J. Koike, S. Utsunomiya, Y. Shimoyama, K. Maruyama, and H. Oikawa, Journal of Materials Research 13, 3256 (1998).

    Google Scholar 

  20. T. Onishi, E. Iwamura, and K. Takagi, Thin Solid Films 340, 306 (1999).

    Google Scholar 

  21. D.K. Kim, B. Heiland, W.D. Nix, E. Arzt, M.D. Deal, and J.D. Plummer, Thin Solid Films 371, 278 (2000).

    Google Scholar 

  22. F.Y. Génin and W.J. Siekhaus, Journal of Applied Physics 79, 3560 (1996).

    Google Scholar 

  23. D.-K. Kim, B. Heiland, W.D. Nix, E. Artz, M.D. Deal, and J.D. Plummer, Thin Solid Films 371, 278 (2000).

    Google Scholar 

  24. C. Herring, in Structure and Properties of Solid Surfaces, edited by W. E. Kingston (University of Chicago Press, 1952), p. 5.

  25. F.Y. Génin, Acta Metallurgica et Materialia 43, 4289 (1995).

    Google Scholar 

  26. W.W. Mullins, Acta Metallurgica 6, 414 (1958).

    Google Scholar 

  27. D. Katzer, D. Gerth, and R. Riesenberg, Mater. Sci. Forum 94-97, 551, (1992).

    Google Scholar 

  28. Kim Deok-Kee, W.D. Nix, M.D. Deal, and J.D. Plummer, Journal of Materials Research 15, 1709 (2000).

    Google Scholar 

  29. K.-N. Tu, J.W. Mayer, and L.C. Feldman, Electronic Thin Film Science: For Electrical Engineers and Materials Scientists (Macmillan, New York, 1992).

    Google Scholar 

  30. L. Mattsson, Y.H. Le Page, and F. Ericson, Thin Solid Films 198, 149 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Génin, F.Y. Surface Morphological Evolution of Thin Films Under Stress and Capillary Forces. Interface Science 9, 83–92 (2001). https://doi.org/10.1023/A:1011231131878

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011231131878

Navigation