Skip to main content
Log in

Progress in deciphering the information content of the ‘glycome’ – a crescendo in the closing years of the millennium

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The closing years of the second millennium have been uplifting for carbohydrate biology. Optimism that oligosaccharide sequences are bearers of crucial biological information has been borne out by the constellation of efforts of carbohydrate chemists, biochemists, immunochemists, and cell- and molecular biologists. The direct involvement of specific oligosaccharide sequences in protein targeting and folding, and in mechanisms of infection, inflammation and immunity is now unquestioned. With the emergence of families of proteins with carbohydrate-binding activities, assignments of information content for defined oligosaccharide sequences will become more common, but the pinpointing and elucidation of the bioactive domains on oligosaccharides will continue to pose challenges even to the most experienced carbohydrate biologists. The neoglycolipid technology incorporates some of the key requirements for this challenge: namely the resolution of complex glycan mixtures, and ligand binding coupled with sequence determination by mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Morgan WTJ, Some immunological aspects of the products of the human blood group genes. In Ciba Foundation Symposium pp. 194–216 (1959).

  2. Watkins WM, Biochemistry and genetics of the ABO, Lewis and P blood group systems, Advances in Human Genetics, 10, 1–136, 379–85 (1980).

    Google Scholar 

  3. Kabat EA, Contributions of quantitative Immunochemistry to knowledge of blood group a, B, H, Le, I and i antigens, Clin Pathol 78, 28l–92 (1982).

    Google Scholar 

  4. Feizi T, Lloyd KO, An appreciation of Elvin A. Kabat (1914–2000): scientist, educator and a founder of modern carbohydrate biology, Glycoconj J 17, 439–42 (2000).

    Google Scholar 

  5. Feizi T, Maclean H, Sommerville RG, Selwyn JG, The role of mycoplasmas in human disease, Proc Roy Soc Med 59, 1109–12 (1966).

    Google Scholar 

  6. Feizi T, Cold agglutinins, the direct Coombs’ test and serum immunoglobulins in Mycoplasma pneumoniae infection. Ann NY Acad Sci 143, 801–12 (1967).

    Google Scholar 

  7. Feizi T, Carbohydrate differentiation antigens Ii, SSEA-l (Lex) and related structures. In New comprehensive biochemistry-Glycoproteins II, edited by Montreuil J, Vliegenthart JFG, Schachter H, (Elsevier Science, Amsterdam, 1997), pp. 571–86.

    Google Scholar 

  8. Feizi T, Taylor-Robinson D, Cold agglutinins anti-I and Mycoplasma pneumoniae Immunology, 13, 405–9 (1967).

    Google Scholar 

  9. Feizi T, Taylor-Robinson D, Shields MD, Carter RA, Production of cold agglutinins in rabbits immunized with human erythrocytes treated with Mycoplasma pneumoniae, Nature, 222, 1253–6 (1969).

    Google Scholar 

  10. Feizi T, Schumacher M, Light chain homogeneity of postinfective cold agglutinins, Clin Exp Immunol 3, 923–9 (1968).

    Google Scholar 

  11. Feizi T, Lamda chains in cold agglutinins, Science 156, 1111–2 (1967).

    Google Scholar 

  12. Feizi T, Kabat EA, Vicari G, Anderson B, Marsh WL, Immunochemical studies on blood groups XLVII. The I antigen complex-Precursors in the A, B, H, Lea and Leb blood group system-Hemagglutination inhibition studies, J Exp Med 133, 39–52 (1971).

    Google Scholar 

  13. Feizi T, Kabat EA, Vicari G, Anderson B, Marsh WL, Immunochemical studies on blood groups XLIX. The I antigen complex: Specificity differences among anti-I sera revealed by quantitative precipitin studies; partial structure of the I determinant specific for one anti-I serum, J Immunol 106, 1578–92 (1971).

    Google Scholar 

  14. Niemann H, Watanabe K, Hakornori S, Chiids RA, Feizi T, Blood group i and I activities of Lacto-N-norhexaosyl ceramide and its analogues: the structural requirements for i-specificities, Biochem Biophys Res Commun 81, 1286–93 (1978).

    Google Scholar 

  15. Feizi T, Childs RA, Watanabe K, Hakomori SI, Three types of blood group I specificity among monoclonal anti-I autoantibodies revealed by analogues of a branched erythrocyte glycolipid, J Exp Med 149, 975–80 (1979).

    Google Scholar 

  16. Feizi T, Structural and biological aspects of blood group I and i antigens on glycolipids and glycoproteins, Blood Trans Immunohaematol 23, 563–77 (1980).

    Google Scholar 

  17. Feizi T, Turberviile C, Westwood JH, Blood-group precursors and cancer-related antigens, Lancet ii, 391–3 (1975).

    Google Scholar 

  18. Picard JK, Waldron Edward D, Feizi T, Changes in the expression of the blood group A, B, H, Lea and Leb antigens and the blood group precursor associated I (Ma) antigen in glycoprotein-rich extracts of gastric carcinoma, J Clin Lab Immunol 1, 119–28 (1978).

    Google Scholar 

  19. Feizi T, The blood group Ii system: a carbohydrate antigen system defined by naturally monoclonal or oligoclonal autoantibodies of man, Immunol Commun 10, 127–56 (1981).

    Google Scholar 

  20. Loomes LM, Uemura K-I, Childs RA, Paulson JC, Rogers GN, Scudder PR, Michalski JC, Hounsell EF, Taylor-Robinson D, Feizi T, Erythrocyte receptors for Mycoplasma pneumoniae are sialylated oligosaccharides of Ii antigen type, Nature 307, 560–63 (1984).

    Google Scholar 

  21. Loomes LM, Uemura K, Feizi T, Interaction of Mycoplasma pneumoniae with erythrocyte glycolipids of I and i antigen types, Infect Immun 47, 15–20 (1985).

    Google Scholar 

  22. Feizi T, Kapadia A, Yount WJ, I and i antigens of human peripheral blood lymphocytes cocap with receptors for concanavalin, A Proc Natl Acad Sci USA 77, 376–80 (1980).

    Google Scholar 

  23. Childs RA, Kapadia A, Feizi T, Expression of blood group I and i active carbohydrate sequences on cultured human and animal cell lines assessed by radioimmunoassays with monoclonal cold agglutinins, Eur J Immunol 10,79–84 (1980).

    Google Scholar 

  24. Childs RA, Feizi T, Differences in carbohydrate moieties of high molecular weight glycoproteins of human lymphocytes of T and B origins revealed by monoclonal autoantibodies with anti-I and anti-i specificities, Biochem Biophys Res Commun 102, 1158–64 (1981).

    Google Scholar 

  25. Childs RA, Dalchau R, Scudder P, Hounsell EF, Fabre JW, Feizi T, Evidence for the occurrence of O-glycosidically linked oligosaccharides of poly-N-acetyllactosamine type on the human leucocyte common antigen, Biochem Biophys Res Commun 110, 424–31 (1983).

    Google Scholar 

  26. Childs RA, Feizi T, Calf heart lectin reacts with blood group Ii antigens and other precursor chains of the major blood group antigens, FEBS Lett 99, 175–9 (1979).

    Google Scholar 

  27. Marsh WL, Anti-i; a cold antibody defining the Ii relationship in human red cells, Brit J Haematol 7, 200–9 (1961).

    Google Scholar 

  28. Muramatsu T, Gachelin G, Nicolas JF, Condamine H, Jakob H, Jacob F, Carbohydrate structure and cell differentitation: unique properties of fucosyl-glycopeptides isolated from embryonal carcinoma cells, Proc Natl Acad Sci USA 75, 2315–9 (1978).

    Google Scholar 

  29. Muramatsu T, Gachelin G, Damonneville M, Delarbre C, Jacob F, Cell surface carbohydrates of embryonal carcinoma cells: polysaccharidic side chains of F9 antigens and of receptors to two lectins, FBP and PNA, Cell 18, 183–91 (1979).

    Google Scholar 

  30. Kapadia A, Feizi T, Evans MJ, Changes in the expression and polarization of blood group I and i antigens in post-implantation embryos and teratocarcinomas of mouse associated with cell differentiation, Exp Cell Res 131, 185–95 (1981).

    Google Scholar 

  31. Feizi T, Kapadia A, Gooi HC, Evans MJ, Human monoclonal autoantibodies detect changes in expression and polarization of the Ii antigens during cell differentiation in early mouse embryos and teratocarcinomas. In Teratocarcinoma and embryonic cell interactions, edited by Muramatsu T, Gachelin G, Moscona A, Ikawa Y, (Japan Scientific Societies Press & Academic Press, Tokyo, 1982), pp. 201–15.

    Google Scholar 

  32. Gooi HC, Feizi T, Kapadia A, Knowles BB, Solter D, Evans MJ, Stage specific embryonic antigen SSEA-1 involves ?1–3 fucosylated type 2 blood group chains, Nature, 292, 156–58 (1981).

    Google Scholar 

  33. Solter D, Knowles BB, Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1), Proc Natl Acad Sci USA 75, 5565–9 (1978).

    Google Scholar 

  34. Bird JM, Kimber SJ, Oligosaccharides containing fucose linked ?(1–3) and ?(1–4) to N-acetylglucosamine cause decompaction of mouse morulae, Developmental Biology 104, 449–60 (1984).

    Google Scholar 

  35. Fenderson BA, Zehavi U, Hakomori S, A multivalent lacto-Nfucopentaose III-lysyllysine conjugate decompacts preimplantation-stage mouse embryos while the free oligosaccharide is ineffective, J Exp Med 160, 1591–6 (1984).

    Google Scholar 

  36. Rastan S, Thorpe SJ, Scudder P, Brown S, Gooi HC, Feizi T, Cell interactions in pre-implantation embryos: evidence for involvement of saccharides of the poly-N-acetyllactosamine series, J Embryol Exp Morph 87, 115–28 (1985).

    Google Scholar 

  37. Scudder P, Hanfland P, Uemura K, Feizi T, Endo-?-galactosidases of Bacteroides fragilis and Escherichia freundii hydrolyse linear but not branched oligosaccharide domains of glycolipids of the neolacto series, J Biol Chem 259, 6586–92 (1984).

    Google Scholar 

  38. Kaneko M, Kudo T, Iwasaki H, Ikehara Y, Nishihara S, Nakagawa S, Sasaki K, Shiina T, Inoko H, Saitou N, Narimatsu H, Alpha1,3-fucosyltransferase IX (Fuc-TIX) is very highly conserved between human and mouse; molecular cloning, characterization and tissue distribution of human FucTIX, FEBS Lett 452, 237–42 (1999).

    Google Scholar 

  39. Hakomori S, Aberrant glycosylation in cancer cell membranes as focused on glycolipids: Overview and perspectives, Cancer Res 45, 2405–14 (1985).

    Google Scholar 

  40. Feizi T, Carbohydrate antigens in human cancer, Cancer Surveys 4, 245–69 (1985).

    Google Scholar 

  41. Feizi T, Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are oncodevelopmental antigens, Nature 314, 53–7 (1985).

    Google Scholar 

  42. Lloyd KO, The chemistry and immunochemistry of blood group A, B, H, and Lewis antigens: past, present and future, Glycoconj J 17, 531–41 (2000).

    Google Scholar 

  43. Feizi T, Carbohydrate differentiation antigens, Trends Biochem Sci 6, 333–5 (1981).

    Google Scholar 

  44. Feizi T, Childs RA, Carbohydratcs as antigenic determinants of glycoproteins, Biochem J 245, 1–11 (1987).

    Google Scholar 

  45. Feizi T, Childs RA, Growth regulating network? Nature, 329, 678 (1987).

    Google Scholar 

  46. Feizi T, Carbohydrate differentiation antigens. In Fetal antigens and cancer. Ciba Foundation Symposium 96 (1992), edited by Everett D, Whelan J (Pitman, 1983), pp. 216–21.

  47. Gooi HC, Thorpe SJ, Hounsell EF, Rumpold H, Kraft D, Forster O, Feizi T, Marker of peripheral blood granulocytes and monocytes of man recognized by two monoclonal antibodies VEP8 and VEP9 involves the trisaccharide 3-fucosyl-Nacetyllactosamine, Eur J Immunol 13, 306–12 (1983).

    Google Scholar 

  48. Thorpe SJ, Feizi T, Species differences in the expression of carbohydrate differentiation antigens on mammalian blood cells revealed by immunofluorescence with monoclonal antibodies, Biosci Reps 4, 673–85 (1984).

    Google Scholar 

  49. Fukuda, MN, Dell, A, Tiller PR, Varki A, Klock JC, Fukuda M, Structure of a novel sialylated fucosyl lacto-N-nor-hexaosylceramide isolated from chronic myelogenous leukemia cells, J Biol Chem 261, 2376–82 (1986).

    Google Scholar 

  50. Macher BA, Buehler J, Scudder P, Knapp W, Feizi T, A novel carbohydrate differentiation antigen on fucogangliosides of human myeloid cells recognized by monoclonal antibody VIM-2, J Biol Chem 263, 10186–91 (1988).

    Google Scholar 

  51. Fukuda M, Hiraoka N, Yeh JC, C-type lectins and sialyl Lewis X oligosaccharides. Versatile roles in cell–cell interaction, J Cell Biol 147, 467–70 (1999).

    Google Scholar 

  52. Bevilacqua MP, Nelson RM, Selectins, J Clin Invest 91, 379–87 (1993).

    Google Scholar 

  53. Yuen C-T, Lawson AM, Chai W, Larkin M, Stoll MS, Stuart AC, Sullivan FX, Ahern TJ, Feizi T, Novel sulfated ligands for the cell adhesion molecule E-selectin revealed by the neoglycolipid technology among O-linked oligosaccharides on an ovarian cystadenorna glycoprotein, Biochemistry 31, 9126–31 (1992).

    Google Scholar 

  54. Helenius A, How N-linked oligosaccharides affect glycoprotein folding in the endoplasmic reticulum, Mol Biol Cell 5, 253–65 (1994).

    Google Scholar 

  55. Bergeron JJ, Brenner MB, Thomas DY, Williams DB, Calnexin: a membrane-bound chaperone of the endoplasmic reticulum, Trends Biochem Sci 19, 124–8 (1994).

    Google Scholar 

  56. Molinari M, Helenius A, Chaperone selection during glycoprotein translocation into the endoplasmic reticulum, Science 288, 331–3 (2000).

    Google Scholar 

  57. Sly WS, Fischer HD, The phosphomannosyl recognition system for intracellular and intercellular transport of lysosomal enzymes, J Cell Biochem 18, 67–85 (1982).

    Google Scholar 

  58. von Figura K, Hasilik A, Lysosomal enzymes and their receptors, Ann Rev Biochem 55, 167–93 (1986).

    Google Scholar 

  59. Kornfeld S, Structure and function of the mannose 6-phosphate/insulin-like growth factor-II receptors, Annu Rev Biochem 61, 307–30 (1992).

    Google Scholar 

  60. Barondes SH, Castronovo V, Cooper DNW, Cummings RD, Drickamer K, Feizi T, Gitt MA, Hirabayashi J, Hughes C, Kasai K, Leffler H, Liu F.-T, Lotan R, Mercurio AM, Monsigny M, Pillai S, Poirier F, Raz A, Rigby PWJ, Rini JM, Wang JL, Galectins: A family of animal β-galactoside-binding lectins. [Letter to the Editor], Cell 76, 597 (1994).

    Google Scholar 

  61. Feizi T, Childs RA, Carbohydrate structures of glycoproteins and glycolipids as differentiation antigens, tumour-associated antigens and components of receptor systems, Trends Biochem Sci 10, 24–9 (1985).

    Google Scholar 

  62. Carding SR, Thorpe SJ, Thorpe R, Feizi T, Transformation and growth related changes in levels of nuclear and cytoplasmic proteins antigenically related to mammalian β-galactosidebinding lectin, Biochem Biophys Res Commun 127, 680–6 (1985).

    Google Scholar 

  63. Perillo NL, Pace KE, Seilhamer JJ, Baum LG, Apoptosis of T cells mediated by galectin-1, Nature 378, 736–9 (1995).

    Google Scholar 

  64. Rabinovich GA, Alonso CR, Sotomayor CE, Durand S, Bocco JL, Ricra CM, Molecular mechanisms implicated in galectin-1-induced apoptosis: activation of the AP-1 transcription factor and downregulation of bcl-2, Cell Death Differ 7, 747–53 (2000).

    Google Scholar 

  65. Salvatore P, Benvenuto G, Pero R, Lembo F, Bruni CB, Chiariotti L, Galectin-1 gene expression and methylation state in human T leukemia cell lines, Int Oncol 17, 1015–18 (2000).

    Google Scholar 

  66. Chung CD, Patel VP, Moran M, Lewis LA, Carrie MM, Galectin-1 induces partial TCR zeta-chain phosphorylation and antagonizes processive TCR signal transduction, J immunol 165, 3722–9 (2000).

    Google Scholar 

  67. Walzel H, Blach M, Hirabayashi J, Kasai KI, Brock J, Involvement of CD2 and CD3 in galectin-1 induced signaling in human Jurkat T-cells, Glycobiology 10, 131–40 (2000).

    Google Scholar 

  68. Pace KE, Hahn HP, Pang M, Nguyen JT, Baum LG, CD7 delivers a pro-apoptotic signal during galectin-1-induced T cell death, J Immunol 165, 2331–4 (2000).

    Google Scholar 

  69. Galvan M, Tsuboi S, Fukuda M, Baum LG, Expression of a specific glycosyltransferase enzyme regulates T cell death mediated by galectin-1, J Biol Chem 275, 16730–7 (2000).

    Google Scholar 

  70. Dimitriou M, Granovski M, Quaggin S, Dennis JW, Negative regulation of T-cell activation by Mgat5 N-glycosylation, Nature 409, 733–9 (2001).

    Google Scholar 

  71. Ashwell G, Harford J, Carbohydrate-specific receptors of the liver, Ann Rev Biochem 51, 531–54 (1982).

    Google Scholar 

  72. Drickamer K, Two distinct classes of carbohydrate-recognition domains in animal lectins, J Biol Chem 263, 9557–60 (1988).

    Google Scholar 

  73. Weis WI, Drickamer K, Structural basis of lectin-carbohydrate recognition, Ann Rev Biochem 65, 441–73 (1996).

    Google Scholar 

  74. Weis WI, Taylor ME, Drickamer K, The C-type lectin superfamily in the immune system, Immunol Rev 163, 19–34 (1998).

    Google Scholar 

  75. Hakansson K, Lim NK, Hoppe HJ, Reid KBM, Crystal structure of the trimeric alpha-helical coiled-coil and the three lectin domains of human lung surfactant protein D, Structure 7, 255–64 (1999).

    Google Scholar 

  76. Drickamer K, Dodd RB, C-Type lectin-like domains in Caenorhabditis elegans: Predictions from the complete genome sequence 1, Glycobiology 9, 1357–69 (1999).

    Google Scholar 

  77. Day AJ, The C-type carbohydrate recognition domain (CRD) superfamily, Biochem Soc Trans 22, 83–8 (1994).

    Google Scholar 

  78. Parham P, NK cell receptors: of missing sugar and missing self, Curr Biol 10, R195–R197 (2000).

    Google Scholar 

  79. Colonna M, Moretta A, Vely F, Vivier E, A high-resolution view of NK-cell receptors: Structure and function 1, Immunol Today 21, 428–31 (2000).

    Google Scholar 

  80. Childs RA, Galustian C, Lawson AM, Dougan G, Benwell K, Frankel G, Feizi T, Recombinant soluble human CD69 dimer produced in Escherichia coli: Reevaluation of saccharide binding, Biochem Biophys Res Commun 266, 19–23 (2000).

    Google Scholar 

  81. McEver RP, Selectin-carbohydrate interactions during inflammation and metastasis, Glycoconj J 14, 585–91 (1997).

    Google Scholar 

  82. Kogelberg H, Montero E, Bay S, Lawson AM, Feizi T, Reevaluation of monosaccharide binding property of recombinant soluble carbohydrate recognition domain of the natural killer cell receptor NKR-P1A, J Biol Chem 274, 30335–6 (1999).

    Google Scholar 

  83. Kogelberg H, Lawson AM, Muskett FW, Carruthers RA, Feizi T, Expression in Escherichia coli, folding in vitro, and characterization of the carbohydrate recognition domain of the natural killer cell receptor NKR-P1A, Protein Expression and Purification 20, 10–20 (2000).

    Google Scholar 

  84. Fiete D, Beranek MC, Baenziger JU, A cysteine-rich domain of the “mannose” receptor mediates GalNAc-4-S04 binding, Proc Natl Acad Sci USA 95, 2089–93 (1998).

    Google Scholar 

  85. Leteux C, Chai W, Loveless RW, Yuen CT, Uhlin-Ilansen L, Combarnous Y, Jankovic M, Maric SC, Misulovin Z, Nussenzweig MC, Feizi T, The cysteine-rich domain of the macrophage mannose receptor is a multispecific lectin that recognizes chondroitin sulfates A and B and sulfated oligosaccharides of blood group Lewisa and Lewisx types in addition to the sulfated N-glycans of lutropin, J Exp Med 191, 1117–26 (2000).

    Google Scholar 

  86. Leteux C, Nussenzweig MC, Ishizuka I, Feizi T, The cysteinerich domain of the macrophage endocytosis receptor recognizes multiple classes of sulphated oligosaccharides. Proceedings Abstract: 20th International Carbohdyrate symposium August 27–September 1, 2000, Hamburg, Germany.

  87. Liu Y, Chirino AJ, Misulovin Z, Leteux C, Feizi T, Nussenzweig MC, Bjorkman PJ, Crystal structure of the cysteine-rich domain of mannose receptor complexed with a sulfated carbohydrate ligand, J Exp Med 191, 1105–16 (2000).

    Google Scholar 

  88. Martinez-Pomares L, Kosco VM, Darley E, Tree P, Herren S, Bonnefoy JY, Gordon S, Fc chimeric protein containing thc cysteine-rich domain of the murine mannose receptor binds to macrophages from splenic marginal zone and lymph node subcapsular sinus and to germinal centers, J Exp Med 184, 1927–37 (1996).

    Google Scholar 

  89. Nath D, Anton van der Merwe P, Kelm S, Bradfield P, Crocker PR, The amino-terminal immunoglobulin-like domain of sialoadhesin contains the sialic acid binding site, J Biol Chem 270, 26184–91 (1995).

    Google Scholar 

  90. Law CL, Aruffo A, Chandran KA, Doty RT, Clark EA, Ig domains 1 and 2 of murine CD22 constitute the ligand-binding domain and bind multiple sialylated ligands expressed on B and T cells, J Immunol 155, 3368–76 (1995).

    Google Scholar 

  91. Tomschy A, Fauser C, Landwehr R, Engel J, Homophilic adhesion of E-cadherin occurs by a co-operative two-step interaction of N-terminal domains, EMBO J 15, 3507–14 (1996).

    Google Scholar 

  92. Crocker PR, Kelm S, Hartnell A, Freeman S, Nath D, Vinson M, Mucklow S, Sialoadhesin and related cellular recognition molecules of the immunoglobulin superfamily, Biochem Soc Trans 24, 150–6 (1996).

    Google Scholar 

  93. Angata T, Varki A, Siglec-7: A sialic acid-binding lectin of the immunoglobulin superfamily, Glycobiology 10, 431–8 (2000).

    Google Scholar 

  94. Harlan JM, Liu DY, Adhesion: Its role in Inflammatory Disease, (W.H. Freeman & Co., New York).

  95. Brandley BK, Swiedler SJ, Robbins PW, Carbohydrate ligands of the LEC cell adhesion molecules, Cell 63, 861–3 (1990).

    Google Scholar 

  96. Ley K, Functions of selectins. In Mammalian carbohydrate binding proteins, edited by Crocker PR, (Springer-Verlag, Berlin Heidelberg New York, 2000), pp. 175–98.

    Google Scholar 

  97. Feizi T, Bundle D, Carbohydrates and glycoconjugates, Editorial Overview, Curr Opin Struct Biol 4, 673–6 (1994).

    Google Scholar 

  98. Feizi T, Cell-cell adhesion and membrane glycosylation, Curr Opin Struct Biol 1, 766–70 (1991).

    Google Scholar 

  99. McEver RP, Moore KL, Cummings RD, Leukocyte trafficking mediated by selectin-carbohydrate interactions, J Biol Chem 270, 11025–8 (1995).

    Google Scholar 

  100. Rosen SD, Bertozzi CR, Leukocyte adhesion: Two selectins converge on sulphate, Curr Biol 6, 261–4 (1996).

    Google Scholar 

  101. Feizi T, Galustian C, Novel oligosaccharide ligands and ligand-processing pathways for the selectins, Trends Biochem Sci 24, 369–72 (1999).

    Google Scholar 

  102. Feizi T, Carbohydrate ligands for the leukocyte-endothelium adhesion molecules, selectins. In Mammalian carbohydrate binding proteins, edited by Crocker PR, (Springer-Verlag, Berlin Heidelberg New York, 2000), pp. 199–221.

    Google Scholar 

  103. Crocker PR, Feizi T, Carbohydrate recognition systems: functional triads in cell–cell interactions, Curr Opin Struct Biol 6, 679–91 (1996).

    Google Scholar 

  104. McEver RP, Moore KL, Cummings RD, Leukocyte trafficking mediated by selectin–carbohydrate interactions, J Biol Chem 270, 11025–8 (1995).

    Google Scholar 

  105. Galustian C, Lawson AM, Komba S, Ishida H, Kiso M, Feizi T, Sialyl-Lewisx sequence 6-O-sulfated at N-acetylglucosamine rather than at galactose is the preferred ligand for L-selectin and de-N-acetylation of the sialic acid enhances the binding strength, Biochem Biophys Res Commun 240, 748–51 (1997).

    Google Scholar 

  106. Hemmerich S, Leffler H, Rosen SD, Structure of the O-glycans in GlyCAM-1, an endothelial-derived ligand for L-selectin, J Biol Chem 270, 12035–47 (1995).

    Google Scholar 

  107. Komba S, Galustian C, Ishida H, Feizi T, Kannagi R, Kiso M, The first total synthesis of 6-sulfo-de-N-acetylsialyl Lewisx ganglioside: A superior ligand for human L-selectin, Angew Chem Int Ed 38, 1131–3 (1999).

    Google Scholar 

  108. Mitsuoka C, Ohmori K, Kimura N, Kanamori A, Komba S, Ishida H, Kiso M, Kannagi R, Regulation of selectin binding activity by cyclization of sialic acid moiety of carbohydrate ligands on human leukocytes, Proc Natl Acad Sci USA 96, 1597–602 (1999).

    Google Scholar 

  109. Sako D, Comess KM, Barone KM, Camphausen RT, Cumming DA, Shaw GD, A sulfated peptide segment at the amino terminus of PSGL-1 is critical for P-selectin binding, Cell 83, 323–31 (1995).

    Google Scholar 

  110. Pouyani T, Seed B, PSGL-1 recognition of P-selectin is controlled by a tyrosine sulfation consensus at the PSGL-1 amino terminus, Cell 83, 333–43 (1995).

    Google Scholar 

  111. Li F, Erickson HP, James JA, Moore KL, Cummings RD, McEver RP, Visualization of P-selectin glycoprotein ligand-1 as a highly extended molecule and mapping of protein epitopes for monoclonal antibodies, J Biol Chem 271, 6342–8 (1996).

    Google Scholar 

  112. Liu W, Ramachandran V, Kang J, Kishimoto TK, Cummings RD, McEver RP, Identification of N-terminal residues on P-selectin glycoprotein ligand-1 required for binding to P-selectin, J Biol Chem 273, 7078–87 (1998).

    Google Scholar 

  113. McEver RP, Cummings RD, Role of PSGL-1 binding to selectins in leukocyte recruitment, J Clin Invest 100, S97–103 (1997).

    Google Scholar 

  114. Lcppanen A, White SP, Helin J, McEver RP, Cummings RD, Binding of glycosulfopeptides to P-selectin requires sterospecific contributions of individual tyrosine sulfate and sugar residues, J Biol Chem 275, 39569–78 (2000).

    Google Scholar 

  115. Feizi T, Oligosaccharides that mediate mammalian cell–cell adhesion, Curr Opin Struct Biol 3, 701–10 (1993).

    Google Scholar 

  116. Needham LK, Schnaar RL, The HNK-1 reactivity Sulfoglucuronyl Glycolipids are ligands for L-selectin and P-selectin but not E-selectin, Proc Natl Acad Sci USA 90, 1359–63 (1993).

    Google Scholar 

  117. Suzuki Y, Toda Y, Tamatani T, Watanabe T, Suzuki T, Nakao T, Murase K, Kiso M, Hasegawa A, Tanado-Aritomi K, Ishizuka I, Miyasaka M, Glycolipids are ligands for a lymphocyte homing receptor, L-selectin (LECAM1), binding epitope in sulfated sugar chain, Biochem Biophys Res Commun 190, 426–34 (1993).

    Google Scholar 

  118. Green PJ, Yuen C-T, Childs RA, Chai W, Miyasaka M, Lcmoine R, Lubineau A, Smith B, Ueno H, Nicolaou KC, Feizi T, Further studies of the binding specificity of the leukocyte adhesion molecule, L-selectin, towards sulphated oligosaccharides --Suggestion of a link between the selectin and the integrin-mediated lymphocyte adhesion systems, Glycobiology 5, 29–38 (1995).

    Google Scholar 

  119. Galustian C, Childs RA, Yuen C-T, Hasegawa A, Kiso M, Lubineau A, Shaw G, Feizi T, Valency dependent patterns of reactivity of human L-selectin towards sialyl and sulfated oligosaccharides of Lea and Lex types: Relevance to antiadhesion therapeutics, Biochemistry 36, 5260–6 (1997).

    Google Scholar 

  120. Somers WS, Tang J, Shaw GD, Camphausen RT, Insights into molecular basis of leukocyte tethering and rolling revealed by structures of P-and e-selectin bound to Sle(X) and PSGL-1, Cell 103, 467–79 (2000).

    Google Scholar 

  121. Feizi T, Antigenicities of mucins–their relevance to tumour associated and stage specific embryonic antigens. In Mucus in health and disease–II. Advances in experimental medicine and biology, edited by Chantler EN, Elder JB, Elstein M, (Plenum Press, New York, 1982), pp. 29–37.

    Google Scholar 

  122. Tang PW, Gooi HC, Hardy M, Lee YC, Feizi T, Novel approach to the study of the antigenicities and receptor functions of carbohydrate chains of glycoproteins, Biochem Biophys Res Commun 132, 474–80 (1985).

    Google Scholar 

  123. Stoll MS, Mizuochi T, Childs RA, Feizi T, Improved procedure for the construction of neoglycolipids having antigenic and lectin-binding activities from reducing oligosaccharides, Biochem J 256, 661–4 (1988).

    Google Scholar 

  124. Magnani JL, Spitalnik SL, Ginsburg V, Antibodies against surface carbohydrates: determination of structure, Methods in Enzymol 138, 195–8 (1987).

    Google Scholar 

  125. Feizi T, Stoll MS, Yuen C-T, Chai W, Lawson AM, Neoglycolipids: probes of oligosaccharide structure, antigenicity and function, Methods Enzymol 230, 484–519 (1994).

    Google Scholar 

  126. Feizi T, Childs RA, Neoglycolipids: probes in structure/function assignments to oligosaccharides, Methods Enzymol 242, 205–17 (1994).

    Google Scholar 

  127. Osanai T, Feizi T, Chai W, Lawson AM, Gustavsson ML, Sudo K, Araki M, Araki K, Yuen C-T, Two families of murine carbohydrate ligands for E-selectin, Biochem Biophys Res Commun 218, 610–5 (1996).

    Google Scholar 

  128. Lawson AM, Chai W, Cashmore GC, Stoll MS, Hounsell EF, Feizi T, High-sensitivity structural analyses of oligosaccharide probes (neoglycolipids) by liquid-secondary-ion mass spectrometry, Carbohydr Res 200, 47–57 (1990).

    Google Scholar 

  129. Chai W, Cashmore GC, Carruthers RA, Stoll MS, Lawson AM, Optimal procedure for combined high-performance thin-layer chromatography/high-sensitivity liquid secondary ion mass spectrometry, Biol Mass Spectrom 20, 169–78 (1991).

    Google Scholar 

  130. Loveless RW, Holmskov U, Feizi T, Collectin-43 is a serum lectin with a distinct pattern of carbohydrate recognition, Immunology 85, 651–9 (1995).

    Google Scholar 

  131. Feizi T, Carbohydrate-mediated recognition systems in innate immunity, Immunol Rev 173, 79–88 (2000).

    Google Scholar 

  132. Feizi T, 'Glyco-epitope’ assignments for the selectins: advances enabled by the neoglycolipid (NGL) technology in conjunction with synthetic carbohydrate chemistry, Adv Exp Med Biol, 491, 65–78 (2001).

    Google Scholar 

  133. Spillmann D, Hard K, Thomas OJ, Vliegenthart JFG, Misevic G, Burger MM, Finne J, Characterization of a novel pyruvylated carbohydrate unit implicated in the cell aggregation of the marine sponge Microciona prolifera, J Biol Chem 268, 13378–87 (1993).

    Google Scholar 

  134. Chai W, Feizi T, Yuen C-T, Lawson AM, Nonreductive release of O-linked oligosaccharides from mucin glycoproteins for structure/function assignments as neoglycolipids: Application in the detection of novel ligands for E-selectin, Glycobiology 7, 861–72 (1997).

    Google Scholar 

  135. Yuen C-T, Chai W, Loveless RW, Lawson AM, Margolis RU, Feizi T, Brain contains HNK-1 immunoreactive O-glycans of the sulfoglucuronyl lactosamine series that terminate in 2-linked or 2,6-linked hexose (mannose), J Biol Chem 272, 8924–31 (1997).

    Google Scholar 

  136. Chai W, Yuen CT, Kogelberg H, Carruthers RA, Margolis RU, Feizi T, Lawson AM, High prevalence of 2-mono-and 2,6-disubstituted Manolterminating sequences among O-glycans released from brain glycopeptides by reductive alkaline hydrolysis, Eur J Biochem 263, 879–88 (1999).

    Google Scholar 

  137. Stoll MS, Feizi T, Loveless RW, Chai W, Lawson AM, Yuen C-T, Fluorescent neoglycolipids: improved probes for oligosaccharide ligand discovery, Eur J Biochem 267, 1795–804 (2000).

    Google Scholar 

  138. Leteux C, Chai W, Nagai K, Lawson AM, Feizi T, 10E4 antigen of scrapie lesions contains an unusual non-sulphated heparan motif, J Biol Chem in press.

  139. Mizuochi T, Loveless RW, Lawson AM, Chai W, Lachmann PJ, Childs RA, Thiel S, Feizi T, A library of oligosaccharide probes (neoglycolipids) from N-glycosylated proteins reveals that conglutinin binds to certain complex type as well as highmannose type oligosaccharide chains, J Biol Chem 264, 13834–9 (1989).

    Google Scholar 

  140. Childs RA, Drickamer K, Kawasaki T, Thiel S, Mizuochi T, Feizi T, Neoglycolipids as probes of oligosaccharide recognition by recombinant and natural mannose-binding proteins of the rat and man, Biochem J 262, 131–8 (1989).

    Google Scholar 

  141. Solis D, Feizi T, Yuen CT, Lawson AM, Harrison RA, Loveless RW, Differential recognition by conglutinin and mannan-binding protein of N-glycans presented on neoglycolipids and glycoproteins with special reference to complement glycoprotein C3 and ribonuclease B, J Biol Chem 269, 11555–62 (1994).

    Google Scholar 

  142. Solis D, Bruix M, Gonzalcz L, Diaz-Maurino T, Rico M, Jimenez-Barbero J, Feizi T, Carrier protein-modulated presentation and recognition of an N-glycan. Observations on the interactions of Man8 glycoform of ribonuclease B with conglutinin, Glycobiology 11, 31–6 (2001).

    Google Scholar 

  143. Gonzalcz L, Bruix M, Diaz-Maurino T, Feizi T, Rico M, Solis D, Jimenez-Barbero J, Conformational studies of the Man8 oligosaccharide on native ribonuclease B and on the reduced and denatured protein, Arch Biochem Biophys 383, 17–27 (2000).

    Google Scholar 

  144. Schachter H, The joys of HexNAc. The synthesis and function of N-and O-glycan branches, Glycoconj J 17, 465–83 (2000).

    Google Scholar 

  145. Lindahl U, “Heparin”--from anticoagulant drug into new biology, Glycoconj J 17, 597–605 (2000).

    Google Scholar 

  146. Hascall VC, Hyaluronan: A common thread, Glycoconj J 17, 607–16 (2000).

    Google Scholar 

  147. Beeson JG, Chai W, Rogerson SJ, Lawson AM, Brown GV, Inhibition of binding of malaria-infected erythrocytes by a tetradecasaccharide fraction from chondroitin sulfate A, Infect Immun 66, 3397–402 (1998).

    Google Scholar 

  148. Sharon N, Ofek I, Safe as mother's milk: Carbohydrates as future antiadhesion drugs for bacterial disease, Glyconjugate J 17, 659–64 (2000).

    Google Scholar 

  149. Maly P, Thall AD, Petryniak B, Rogers CE, Smith PL, Marks RM, Kelly RJ, Gersten KM, Cheng G, Saunders TL, Camper SA, Camphausen RT, Sullivan FX, Isogai Y, Hindsgaul O, von Andrian UH, Lowe JB, The alpha(1,3)fucosyltransferase Fuc-TVII controls leukocyte trafficking through an essential role in L-, E-, and Pselectin ligand biosynthesis, Cell 86, 643–53 (1996).

    Google Scholar 

  150. Hemmerich S, Rosen SD, Carbohydrate sulfotransferases in lymphocyte homing, Glycobiology 10, 849–856 (2000).

    Google Scholar 

  151. Muramatsu T, Protein-bound carbohydrates on cell-surface as targets of recognition: an odyssey in understanding them, Glycoconj J 17, 577–95, (2000).

    Google Scholar 

  152. Augé C, Dagron F, Lemoine R, Le Narvor C, Lubineau A, Syntheses of sulfated derivatives as sialyl Lewisa and sialyl Lewisx analogues, Carbohydrate mimics: concepts and methods. Verlag Chemie Weinheim, RFA 365–83 (1997).

  153. Sears P, Wong CH, Carbohydrate Mimetics: A New Strategy for Tackling the Problem of Carbohydrate-Mediated Biological Recognition, Angew Chem Int Ed Engl 38, 2300–24 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feizi, T. Progress in deciphering the information content of the ‘glycome’ – a crescendo in the closing years of the millennium. Glycoconj J 17, 553–565 (2000). https://doi.org/10.1023/A:1011022509500

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011022509500

Navigation