Skip to main content
Log in

Stellar Wind as a Stimulator of Accretion Activity in Young Binary Systems

  • Published:
Astrophysics Aims and scope

Abstract

A young binary system is considered, having a mass ratio of components M 2/M 1 ≪ 1, in which the low-velocity part of the stellar wind of the low-mass component (the so-called disk wind) can be partially captured by the gravitation of the primary component. It is shown that a large-scale redistribution of matter and angular momentum between the inner and outer parts of the gas-dust disk surrounding the binary system occurs as a result, with a consequent increase in the rate of accretion onto the primary component. In cases in which the orbital eccentricity of the secondary component is nonzero, modulation of the rate of accretion onto the primary component should be observed with a period equal to the orbital period, while in the case of a highly elongated orbit the mass accretion acquires a pulsed character. Since dust may be present in the disk wind from the secondary component, the capture of stellar wind will result in an increase in the effective geometrical thickness of the gas-dust disk. For this reason, the infrared (IR) emission excesses of such stars (especially in the near-IR range) and their intrinsic polarization can be considerably greater than in the case of a single star surrounded by a circumstellar disk of the same mass, and a periodic component may also be present in their behavior with time. Moreover, because of disruption of the axial symmetry in the dust distribution in the vicinity of the young binary system, the orbital period may also be present in its brightness variations. The role of these effects in the physics of young stars is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. M. Ghez, in: Evolutionary Processes in Binary Stars, R. A. M. J. Wijers et al., eds., Kluwer Acad. Publ. (1996), p. 1.

  2. R. D. Mathieu, in: Evolutionary Processes in Binary Stars, R. A. M. J. Wijers et al., eds., Kluwer Acad. Publ. (1996), p. 11.

  3. D. N. C. Lin and J. C. B. Papaloizou, Mon. Not. R. Astron. Soc., 191, 37 (1979).

    Google Scholar 

  4. P. Goldreich and S. Tremain, Annu. Rev. Astron. Astrophys., 20, 249 (1982).

    Google Scholar 

  5. P. Artimowics and S. H. Lubov, Astrophys. J., 467, L77 (1996).

    Google Scholar 

  6. M. R. Bate and I. A. Bonnell, Mon. Not. R. Astron. Soc., 285, 33 (1997).

    Google Scholar 

  7. S. J. Wolk and S. C. Beck, Publ. Astron. Soc. Pac., 102, 323 (1990).

    Google Scholar 

  8. G. Basri and C. Bertout, in: Protostars and Planets III, E. H. Levy and J. I. Lunine, eds., Univ. of Arizona Press, Tucson (1993), p. 543.

    Google Scholar 

  9. J. Kwan and E. Tademaru, Astrophys. J., 332, L41 (1988).

    Google Scholar 

  10. A. K?nigl, in: Disks and Outflows Around Young Stars, S. Beckwith et al., eds., Springer (1996), p. 282.

  11. G. A. Hirth, R. Mundt, and J. Solf, Astron. Astrophys., 285, 929 (1994).

    Google Scholar 

  12. P. Hartigan, S. E. Edwards, and L. Ghandour, Astrophys. J., 436, 125 (1995).

    Google Scholar 

  13. I. Appenzeller and R. Mundt, Astron. Astrophys. Rev., 1, 291 (1989).

    Google Scholar 

  14. A. P. Goodson, K.-H. Buhm, and R. Winglee, Astrophys. J., 524, 142 (1999).

    Google Scholar 

  15. N. I. Shakura and R. A. Syunyaev (Sunyaev), Astron. Astrophys., 24, 337 (1973).

    Google Scholar 

  16. D. Lynden-Bell and J. E. Pringle, Mon. Not. R. Astron. Soc., 168, 603 (1974).

    Google Scholar 

  17. N. Mastrodemos and M. Morries, Astrophys. J., 523, 357 (1999).

    Google Scholar 

  18. A. Natta, V. P. Grinin, and V. Mannings, in: Protostars and Planets IV, F. Adams et al., eds. (2000).

  19. S. J. Kenyon and L. Hartmann, Astrophys. J., 323, 714 (1987).

    Google Scholar 

  20. E. I. Chiang and P. Goldreich, Astrophys. J., 490, 368 (1997).

    Google Scholar 

  21. A. Natta, T. Prusti, R. Neri, et al., Astron. Astrophys., 350, 541 (1999).

    Google Scholar 

  22. L. A. Hillenbrand, S. E. Strom, F. J. Vrba, and J. Keene, Astrophys. J., 397, 613 (1992).

    Google Scholar 

  23. N. Calvet, L. Hartmann, S. J. Kenyon, and B. A. Whitney, Astrophys. J., 434, 330 (1994).

    Google Scholar 

  24. A. Natta, Astrophys. J., 412, 761 (1993).

    Google Scholar 

  25. T. Montmerle, E. D. Feigelson, J. Bouvier, and P. Andre, in: Protostars and Planets III, E. H. Levy and J. I. Lunine, eds., Univ. of Arizona Press, Tucson (1993), p. 689.

    Google Scholar 

  26. F. M. Walter, Astrophys. J., 306, 573 (1986).

    Google Scholar 

  27. V. P. Grinin, Pisíma Astron. Zh., 14, 65 (1988).

    Google Scholar 

  28. V. P. Grinin, N. N. Kiselev, N. Kh. Minikhulov, G. P. Chernova, and N. V. Voshchinnikov, Astrophys. Space Sci., 186, 283 (1991).

    Google Scholar 

  29. A. N. Rostopchina, V. P. Grinin, A. Okazaki, S. Kikuchi, et al., Astron. Astrophys., 327, 145 (1997).

    Google Scholar 

  30. V. P. Grinin, A. N. Rostopchina, and D. N. Shakhovskoi, Pisíma Astron. Zh., 24, 925 (1998).

    Google Scholar 

  31. A. N. Rostopchina, V. P. Grinin, and D. N. Shakhovskoi, Pisíma Astron. Zh., 25, 291 (1999).

    Google Scholar 

  32. V. P. Grinin, Astron. Astrophys. Trans., 3, 17 (1992).

    Google Scholar 

  33. A. Natta, V. P. Grinin, V. Mannings, and H. Ungerechts, Astrophys. J., 491, 885 (1997).

    Google Scholar 

  34. L. Hartmann and S. Kenyon, Astrophys. J., 299, 462 (1985).

    Google Scholar 

  35. L. Hartmann, S. Kenyon, and P. Hartigan, in: Protostars and Planets III, E. H. Levy and J. I. Lunine, eds., Univ. of Arizona Press, Tucson (1993), p. 497.

    Google Scholar 

  36. S. Edwards, T. P. Ray, and R. Mundt, in: Protostars and Planets III, E. H. Levy and J. I. Lunine, eds., Univ. of Arizona Press, Tucson (1993), p. 567.

    Google Scholar 

  37. C. J. Burrows et al., Astrophys. J., 473, 437 (1996).

    Google Scholar 

  38. E. Belokoní, Astron. Zh., 68, 1 (1991).

    Google Scholar 

  39. M. S. Begelman, R. D. Blandford, and M. J. Rees, Nature (London), 287, 307 (1980).

    Google Scholar 

  40. A. SillanpДД, S. Haarala, M. J. Valtonen, et al., Astrophys. J., 325, 628 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grinin, V.P. Stellar Wind as a Stimulator of Accretion Activity in Young Binary Systems. Astrophysics 43, 446–457 (2000). https://doi.org/10.1023/A:1010971009185

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010971009185

Keywords

Navigation