Skip to main content
Log in

Predicting Optimal Lengths of Random Knots

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

In a thermally fluctuating long linear polymeric chain in a solution, the ends, from time to time, approach each other. At such an instance, the chain can be regarded as closed and thus will form a knot or rather a virtual knot. Several earlier studies of random knotting demonstrated that simpler knots show a higher occurrence for shorter random walks than do more complex knots. However, up to now there have been no rules that could be used to predict the optimal length of a random walk, i.e. the length for which a given knot reaches its highest occurrence. Using numerical simulations, we show here that a power law accurately describes the relation between the optimal lengths of random walks leading to the formation of different knots and the previously characterized lengths of ideal knots of a corresponding type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sumners, D. W. and Whittington, S. G.: Knots in self avoiding walks, J. Phys. A: Math. Gen. 21 (1988), 1689–1694.

    Google Scholar 

  2. Matthews, R.: Knotted rope: a topological example of Murphy's law, Math. Today 33 (1997), 82–84.

    Google Scholar 

  3. Frank-Kamenetskii, M. D., Lukashin, A. V. and Vologodskii, A. V.: Statistical mechanics and topology of polymer chains, Nature 258 (1975), 398–402.

    Google Scholar 

  4. Rybenkov, V. V., Cozzarelli, N. R. and Vologodskii, A. V.: The probability of DNA knotting and the effective diameter of the DNA double helix, Proc. Nat. Acad. Sci. U.S.A. 90 (1993), 5307–5311.

    Google Scholar 

  5. Deguchi, T. and Tsurusaki, K.: A statistical study of random knotting using the Vassiliev invariants, J. Knot Theory Ramifications 3 (1994), 321–353.

    Google Scholar 

  6. Janse van Rensburg, E. J., Orlandini, E. Sumners, D. W., Tesi, M. C. and Whittington, S. G.: J. Knot Theory Ramifications 6 (1997), 31–44.

    Google Scholar 

  7. Koniaris, K. and Muthukumar, M.: Knottedness in ring polymers, Phys. Rev. Lett. 66 (1991), 2211–2214.

    Google Scholar 

  8. de Gennes, P. G.: Scaling Concepts in Polymer Physics, Cornell Univ. Press, Ithaca, 1979.

    Google Scholar 

  9. Alper, J. and Nelson, G. L.: Polymeric Materials: Chemistry for the Future, Amer. Chem. Soc., Washington, DC, 1989.

    Google Scholar 

  10. Orlandini, E., Janse van Rensburg, E. J., Tesi, M. C. and Whittington, S. G.: Entropic exponents of knotted lattice polygons, In: S. G. Whittington and D. W. Sumners (eds). Topology and Geometry in Polymer Science, Springer, New York, 1998, pp. 9–21.

    Google Scholar 

  11. Katritch, V., Bednar, J., Michoud, D., Scharein, R. G., Dubochet, J. and Stasiak, A.: Geometry and physics of knots, Nature (London) 384 (1996), 142–145.

    Google Scholar 

  12. Stasiak, A., Katritch, V., Bednar, J., Michoud, D. and Dubochet, J.: Electrophoretic mobility of DNA knots, Nature (London) 384 (1996), 122.

    Google Scholar 

  13. Vologodskii, A., Crisona, N., Laurie, B., Pieranski, P., Katritch, V., Dubochet, J. and Stasiak, A.: Sedimentation and electrophoretic migration of DNA knots and catenanes, J. Molec. Biol. 278 (1998), 1–3.

    Google Scholar 

  14. Alexander, J. W.: Topological invariants of knots and links, Trans. Amer. Math. Soc. 30 (1928), 275–306.

    Google Scholar 

  15. Frank-Kamenetskii, M. D. and Vologodskii, A. V.: Topological aspects of polymer physics: theory and its biophysical applications, Soviet Phys. Usp. 24 (1981), 679–696.

    Google Scholar 

  16. Adams, C. C.: The Knot Book, W. H. Freeman, New York, 1994.

    Google Scholar 

  17. Calvo, J. A. and Millett, K. C.: Minimal edge piecewise linear knots, In: A. Stasiak, V. Katritch and L. H. Kauffman (eds), World Scientific, Singapore, 1998, pp. 107–128.

    Google Scholar 

  18. Katritch, V., Olson, W. K., Vologodskii, A., Dubochet, J. and Stasiak, A.: Tightness of random knotting, Phys. Rev. E 61 (2000), 5545–5549.

    Google Scholar 

  19. Deguchi, T. and Tsurusaki, K., In: S. Suzuki (ed.) Lectures at Knots 96, World Scientific, Singapore, 1997, p. 95.

    Google Scholar 

  20. Vologodskii, A. V.: Topology and Physics of Circular DNA, Physical approaches to DNA, CRC Press, Boca Raton, 1992.

    Google Scholar 

  21. Rolfsen, D.: Knots and Links, Publish or Perish, Berkeley, CA, 1976.

    Google Scholar 

  22. de la Harpe, P.: Introduction to knot and link polynomials, In: A. Amann, L. Cederbaum and W. Gans (eds), Fractals, Quasicrystals, Chaos, Knots and Algebraic Quantum Mechanics, Kluwer Acad. Publ., Dordrecht, 1988, pp. 233–263.

    Google Scholar 

  23. Stasiak, A., Dubochet, J., Katritch, V. and Pieranski, P.: Ideal knots and their relation to the physics of real knots, In: A. Stasiak, V. Katritch and L. H. Kauffman (eds), Ideal Knots, World Scientific, Singapore, 1998, pp. 1–19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobay, A., Sottas, PE., Dubochet, J. et al. Predicting Optimal Lengths of Random Knots. Letters in Mathematical Physics 55, 239–247 (2001). https://doi.org/10.1023/A:1010921318473

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010921318473

Navigation