Skip to main content
Log in

A Highly Conductive Porous Medium for Solid–Gas Reactions: Effect of the Dispersed Phase on the Thermal Tortuosity

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The heat transfer in a highly conductive material constituted by a graphite matrix in which a granular phase is dispersed is studied. The effective thermal conductivity of this anisotropic porous composite medium used in solid–gas reactors can vary largely with the component fractions. The effect of the dispersed grains on the deformable structure of the matrix is considered. A model developed on the basis of thermal tortuosity by analogy with mass transfer is adequately correlated with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agapiou, J. S. and De Vries, M. F.: 1989, An experimental determination of the thermal conductivity of a 304L stainless steel powder metallurgy material, ASME J. Heat Transfer 111, 281–286.

    Google Scholar 

  • Akanni, K. A., Evans, J. W. and Abramson, I. S.: 1987, Effective transport coefficients in heterogeneous media, Chem. Engng Sci. 42, 1945–1954.

    Google Scholar 

  • Archie, G. E.: 1942, The electrical resistivity log as an aid in determining some reservoir characteristics, Trans. AIME 146, 54–61.

    Google Scholar 

  • Batsale, J. C., Stemmelen, D. et Degiovanni, A.: 1992, Difficult´es liéees áa la réealisation d'un montage expéerimental monodimensionnel pour l'éetude des transferts de chaleur et de masse dans les milieux poreux non-saturées, Int. J. Heat Mass Transfer 35, 3465–3478.

    Google Scholar 

  • Bauer, R. and Schlüunder, E. U.: 1978, Effective radial thermal conductivity of packings in gas flow. Part II. Thermal conductivity of the packing fraction without gas flow, Int. Chem. Engng 18, 189–204.

    Google Scholar 

  • Bauer, T. H.: 1993, A general analytical approach toward the thermal conductivity of porous media, Int. J. Heat Mass Transfer 36, 4181–4191.

    Google Scholar 

  • Brouers, F.: 1986, Percolation threshold and conductivity in metal-insulator composite mean-field theories, J. Physics C: Solid State Physic 19, 7183–7193.

    Google Scholar 

  • Bruggeman, D. A. G.: 1935, Calculation of different physical constants of heterogeneous substances I: dielectric constant and conductivity of media of isotropic substances, Ann. Phys. Series 5, 24, 636.

    Google Scholar 

  • Carslaw, H. S. and Jaeger, J. C.: 1959, Conduction of heat in solids, Oxford University Press, p. 139.

  • Ce-Wen Nan, Birringer, R., Clarke, D. R. and Gleiter, H.: 1992, Effective thermal conductivity of particulate composites with interfacial thermal resistance, J. Appl. Phys. 81, 6692–6699.

    Google Scholar 

  • Chiew, Y. C. and Glandt, E. D.: 1987, Effective conductivity of dispersions: the effect of resistance at the particle surfaces, Chem. Engng Sci. 42, 2677–2685.

    Google Scholar 

  • Collishaw, P. G. and Evans, J. R. G.: 1994, Review: an assessment of expressions for the apparent thermal conductivity of cellular materials, J. Materials Sci. 29, 2261–2273.

    Google Scholar 

  • Dullien, F. A. L: 1979, Porous Media: Fluid Transport and Pore Structure, Academic Press, New York, p. 306.

    Google Scholar 

  • Elias-Kohav, T., Sheintuch, M. and Avnir, D.: 1991, Steady-state diffusion and reactions in catalytic fractal porous media, Chem. Engng Sci. 46, 2787–2798.

    Google Scholar 

  • Epstein, N.: 1989, On tortuosity and the tortuosity factor in flow and diffusion through porous media, Chem. Engng Sci. 44, 777–779.

    Google Scholar 

  • Francl, J. and Kingery, D.: 1954, J. Am. Ceramic Soc. 37, 99.

    Google Scholar 

  • Glatzmaier, G. C. and Ramirez, W. F.: 1988, Use of volume averaging for the modeling of thermal properties of porous materials, Chem. Engng Sci. 43, 3157–3169.

    Google Scholar 

  • Harriott, P.: 1975, Thermal conductivity of catalyst pellets and other porous particles. Part I: review of models and published results, Chem. Engng J. 10, 65–71.

    Google Scholar 

  • Kaviany, M.: 1995, Principles of heat transfer in porous media, 2nd edn, Springer, Verlag New York, p. 119.

    Google Scholar 

  • Landau, L. D. and Lifshitz, E. M.: 1969, Electrodynamique des milieux continus, Mir, Moscou.

    Google Scholar 

  • Mauran, S., Coudevylle, O. and Lu, H. B.: 1996, Optimization of porous reactive media for solid sorption heat pumps, in: Proc. Int Ab-Sorption Heat Pump Conference 1. Montreal, pp. 401–408.

    Google Scholar 

  • Mauran, S., Lebrun, M., Prades, P., Moreau, M., Spinner, B. and Drapier, C.: 1991, US Patent No. 777.537.

  • Mauran, S., Prades, P. and L'Haridon, F.: 1993, Heat and mass transfer in consolidated reacting beds for thermochemical system, Heat Recovery Systems and C.H.P. 13, 315–319.

    Google Scholar 

  • McLachlan, D. S.:1987, An equation for the conductivity of binary mixtures with anisotropic grain structures, J. Physics C: Solid State Physic 20, 865–877.

    Google Scholar 

  • Punc\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{o} \)cháařr, M. and Drahoš, J.: 1993, The tortuosity concept in fixed and fluidized bed, Chem. Engng Sci. 48, 2173–2175.

  • Rigaud, L.: 1997, Ecoulements de gaz en réegime permanent et transitoire áa travers des milieux poreux composites graphite-sel pour transformateurs thermochimiques. Correlations entre perméeabilitée et texture, Théese de Doctorat, Universitée de Perpignan.

  • Sahimi, M., Gavalas, G. R. and Tsotsis, T. T.: 1990, Statistical and continuum models of fluid-solid reactions in porous media, Chem. Engng Sci. 45, 1443–1505.

    Google Scholar 

  • Schulz, B.: 1981, Thermal conductivity of porous and highly porous materials, High Temp.-High Press. 13, 649–660.

    Google Scholar 

  • Sen, P. N.: 1981, Relation of certain geometrical features to the dielectric anomaly of rocks, Geophysics 46, 1714–1720.

    Google Scholar 

  • Shklovskii, B. I.: 1978, Anisotropy of percolation conduction, Physica Status Solidi (b) 85, K111-K114.

    Google Scholar 

  • Singh, B. S., Dybbs, A. and Lyman F. A.: 1973, Experimental study of the effective thermal conductivity of liquid saturated sintered fiber metal wicks, Int. J. Heat Mass Transfer 16, 145–155.

    Google Scholar 

  • Sridhar, M. R. and Yovanovich, M. M.: 1996, Thermal contact conductance of tool steel and comparison with model, Int. J. Heat Mass Transfer 39, 831–839.

    Google Scholar 

  • Touloukian, Y. S., Powell, R. W., Ho, C. Y. and Klemens, P. G.: 1970, Thermophysical properties of matter, IFI/Plenum, New York 11.

    Google Scholar 

  • Tsotsas, E. and Martin, H.: 1987, Thermal conductivity of packed beds: A review, Chem. Engng Processing 22, 19–37.

    Google Scholar 

  • Verma, L. S., Ramvir Singh and Chaudhary, D. R.: 1994, Geometry dependent resistor model for predicting effective thermal conductivity of two phase systems, Int. J. Heat Mass Transfer 37, 704–714.

    Google Scholar 

  • Wyllie, M. R. J. and Gregory, A. R.: 1953, Formation factor of unconsolidated porous media: influence of particle shape and effect of cementation, Petroleum Transactions AIME 198, 103–110.

    Google Scholar 

  • Yagi, S. and Kunii, D.: 1957, Studies on effective thermal conductivities in packed beds, A.I.Ch.E. J. 3, 373–381.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olives, R., Mauran, S. A Highly Conductive Porous Medium for Solid–Gas Reactions: Effect of the Dispersed Phase on the Thermal Tortuosity. Transport in Porous Media 43, 377–394 (2001). https://doi.org/10.1023/A:1010780623891

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010780623891

Navigation