Skip to main content
Log in

Smoothed Particle Hydrodynamics Model for Diffusion through Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

A smoothed particle hydrodynamics (SPH) model is presented for the study of diffusion in spatially periodic porous media. The method of SPH is formulated to solve the convection–diffusion equation for tracer diffusion under steady state and transient conditions. Solutions obtained using SPH are compared with other available solutions and the model is used to calculate diffusion coefficients of spatially periodic porous media for the steady state diffusion problem. Diffusion coefficients are then used to calculate nondimensional diffusivities of the media. The effects of media properties on the values of nondimensional diffusivity are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adler, P. M.: 1992, Porous media: Geometry and transports, Butterworth-Heinemann, Stoneham, MA.

    Google Scholar 

  • Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., and Krysl, P.: 1996, Meshless methods: An overview and recent developments, Comput. Methods Appl. Mech. Eng. 139, 3-47.

    Google Scholar 

  • Benz, W.: 1990, Smooth particle hydrodynamics: A review. In: J. R. Buchler, The numerical modelling of nonlinear stellar pulsations, Kluwer Academic Publishers, pp. 269-288.

  • Bhattacharya, R. and Gupta, V. K.: 1990 Dynamics of fluids in hierarchical porous media, Chapt. IV, Academic Press, London, pp. 61-96.

    Google Scholar 

  • Coelho, D., Thovert, J.-F. and Adler, P. M.: 1997, Geometrical and transport properties of random packings of spheres and aspherical particles, Physical Review E 55(2), pp. 1959-1978.

    Google Scholar 

  • Crank, J.: 1975, The mathematics of diffusion. Oxford University Press, Oxford.

    Google Scholar 

  • Einstein, A.: 1956, Investigations on the theory of Brownian movement, Dover, New York.

    Google Scholar 

  • Fried, J. J. and Combarnous, M. A.: 1971, Dispersion in porous media, Adv. Hydrosci. 7, 169-282.

    Google Scholar 

  • Gingold, R. A. and Monaghan, J. J.: 1977, Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon. Not. R. Astr. Soc. 181, 375-389.

    Google Scholar 

  • Lucy, L. B.: 1977, A numerical approach to the testing of the fission hypothesis, The Astro J. 82(12), 1013-1024.

    Google Scholar 

  • Maxwell, J. C.: 1873, A treatise on electricity and magnetism, Vol. 1. London: Clarendon Press.

    Google Scholar 

  • Monaghan, J. J.: 1992, Smoothed particle hydrodynamics, Annu. Rev. Astron. Astrophys. 30, 543-574.

    Google Scholar 

  • Monaghan, J. J.: 1995, Heat conduction with discontinuous conductivity, Applied Mathematics Reports and Preprints, 95/18, Monash University, Australia.

    Google Scholar 

  • Morris, J. P.: 1996 Analysis of smoothed particle hydrodynamics with applications, Ph.D. thesis, Monash University, Australia

    Google Scholar 

  • Morris, J. P.: 2000, Simulating surface tension with Smoothed Particle Hydrodynamics. Int. J. Numer. Meth. Fluid Flow, 33(3), 333-353.

    Google Scholar 

  • Morris, J. P., Fox, P. J. and Zhu, Y.: 1997, Modeling low Reynolds number incompressible flows using SPH, J. Computational Phy. 136, 214-226.

    Google Scholar 

  • Perkins, T. K. and Johnston, O. C.: 1963, A review of diffusion and dispersion in porous media, Society of Petroleum Engng J. 3, 70-84.

    Google Scholar 

  • Perrins, W. T., McKenzie, D. R. and McPhedran, R. C.: 1979, Transport properties of regular arrays of cylinders, Phil. Trans. R. Soc. Lond. A369, 207-225.

    Google Scholar 

  • Randles, P. W. and Libersky, L. D.: 1996, Smoothed particle hydrodynamics: some recent improvements and applications, Comput. Methods Appl. Mech. Eng. 139, 375-408.

    Google Scholar 

  • Rayleigh, L.: 1892, On the influence of obstacles arranged in rectangular order upon the property of a medium, Phil. Mag. 34, 481-502.

    Google Scholar 

  • Saffman, P. G.: 1960, Dispersion due to molecular diffusion and macroscopic mixing in flow through a network of capillaries, J. Fluid Mech. 7, 194-208.

    Google Scholar 

  • Shackelford, C. D. and Daniel, D. E.: 1991, Diffusion in saturated soil. I: background, J. Geotechnical Engng 117(3), 467-484.

    Google Scholar 

  • Thovert, J. F., Wary, F. and Adler, P. M.: 1990, Thermal conductivity of random media and regular fractals, J. Appl. Phy. 68(8), 3872-3883.

    Google Scholar 

  • Zhu, Y.: 1999, A pore-scale study of flow and transport through porous media, Ph.D. thesis, Purdue University, USA.

    Google Scholar 

  • Zhu, Y., Fox, P. J. and Morris, J. P.: 1997, Smoothed particle hydrodynamics model for flow through porous media. In: Proc. 9th International Conf Computer Methods and Advances in Geomechanics, Wuhan, P. R. China., Vol. 2. pp. 1041-1046.

    Google Scholar 

  • Zhu, Y., Fox, P. J. and Morris, J. P.: 1999, A pore-scale numerical model for flow through porous media, International J. Numerical and Analytical Methods in Geomechanics 23, 881-904.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Y., Fox, P.J. Smoothed Particle Hydrodynamics Model for Diffusion through Porous Media. Transport in Porous Media 43, 441–471 (2001). https://doi.org/10.1023/A:1010769915901

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010769915901

Navigation