Skip to main content
Log in

Modeling Biogeochemical Processes in Leachate-Contaminated Soils: A Review

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

During subsurface transport, reactive solutes are subject to a variety of hydrological, physical and biochemical processes. The major hydrological and physical processes include advection, diffusion and hydrodynamic dispersion, and key biochemical processes are aqueous complexation, precipitation/dissolution, adsorption/desorption, microbial reactions, and redox transformations. The addition of strongly reduced landfill leachate to an aquifer may lead to the development of different redox environments depending on factors such as the redox capacities and reactivities of the reduced and oxidised compounds in the leachate and the aquifer. The prevailing redox environment is key to understanding the fate of pollutants in the aquifer. The local hydrogeologic conditions such as hydraulic conductivity, ion exchange capacity, and buffering capacity of the soil are also important in assessing the potential for groundwater pollution. Attenuating processes such as bacterial growth and metal precipitation, which alter soil characteristics, must be considered to correctly assess environmental impact. A multicomponent reactive solute transport model coupled to kinetic biodegradation and precipitation/dissolution model, and geochemical equilibrium model can be used to assess the impact of contaminants leaking from landfills on groundwater quality. The fluid flow model can also be coupled to the transport model to simulate the clogging of soils using a relationship between permeability and change in soil porosity. This paper discusses the different biogeochemical processes occurring in leachate-contaminated soils and the modeling of the transport and fate of organic and inorganic contaminants under such conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abriola, L. M.: 1987, Modeling contaminant transport in the subsurface: An interdisciplinary challenge, Rev. Geophys. 25, 125-134.

    Google Scholar 

  • Alesii, B. A., Fuller, W. H. and Boyle, M. V.: 1980, Effect of leachate flow rate on metal migration through soil, J. Environ. Qual. 9, 119-126.

    Google Scholar 

  • Allison, J. D., Brown, D. S. and Nova-Gradac, K. J.: 1991, MINTEQA2/PRODEFA2, A Geochemical Assessment Model for Environmental Systems: Version 3.0 User's Manual, Environ. Res. Lab. Off. of Res. and Dev., U.S. Environ. Prot. Agency, Athens, GA.

    Google Scholar 

  • Appelo, C. A. J. and Willemsen, A.: 1987, Geochemical calculations and observations on saltwater intrusions, I. A combined geochemical/mixing cell model, J. Hydrol. 94, 313-330.

    Google Scholar 

  • Baedecker, M. J. and Back, W.: 1979, Modern marine sediments as a natural analog to the chemically stressed environments of a landfill, J. Hydrol. 43, 393-413.

    Google Scholar 

  • Bagchi, Amalendu: 1987, Natural attenuation mechanisms of landfill leachate and effects of various factors on the mechanisms, Waste Manage. Res. 5, 453-464.

    Google Scholar 

  • Barker, J. F., Tessmann, J. S., Plotz, P. E. and Reinhard, M.: 1986, The organic geochemistry of a sanitary landfill leachate plume, J. Contam. Hydrol. 1, 171-189.

    Google Scholar 

  • Barry, D. A., Miller, C. T. and Culligan-Hensley, P. J.: 1996, Temporal discretization errors in noniterative split-operator approaches to solving chemical reaction/groundwater transport models, J. Contam. Hydrol. 22, 1-17.

    Google Scholar 

  • Baveye, P. and Valocchi, A.: 1989, An evaluation of mathematical models of the transport of biologically reacting solutes in saturated soils and aquifers, Water Resour. Res. 26, 1413-1421.

    Google Scholar 

  • Bear, J.: 1972, Dynamics of Fluids in Porous Media, Elsevier, New York.

    Google Scholar 

  • Bear, J.: 1979, Hydraulics of Groundwater, McGraw-Hill, New York.

    Google Scholar 

  • Bjerg, P. L., Rügge, K., Pedersen, J. K. and Christensen, T. H.: 1995, Distribution of redox sensitive groundwater quality parameters downgradient of a landfill (Grindsted, Denmark), Environ. Sci. Technol. 29, 1387-1394.

    Google Scholar 

  • Borden, R. C. and Bedient, P. B.: 1986, Transport of dissolved hydrocarbon influenced by oxygenlimited biodegradation, 1, Theoretical development, Water Resour. Res. 22, 1973-1982.

    Google Scholar 

  • Bouwer, E. J. and Cobb, G. B.: 1987, Modeling of biological processes in the subsurface, Water Sci. Technol. 19, 769-779.

    Google Scholar 

  • Boyle, M. and Fuller, W. H.: 1987, Effect of municipal solid waste leachate composition on zinc migration through soils, J. Environ. Qual. 16, 357-360.

    Google Scholar 

  • Brune, M., Ramke, H. G., Collins, H. J. and Hanert, H. H.: 1994, Incrustation problems in landfill drainage systems, In: T. H. Christensen, R. Cossu and R. Stegmann (eds), Landfilling of Waste: Barriers, E & FN Spon, London, pp. 569-605.

    Google Scholar 

  • Brusseau, M. L. and Rao, P. S. C.: 1989, Sorption nonideality during organic contaminant transport in porous media, CRC Crit. Rev. Environ. Cont. 19, 33-99.

    Google Scholar 

  • Bryant, S. L., Schechter, R. S. and Lake, L. W.: 1986, Interaction of precipitation/dissolution waves and ion exchange in flow through permeable media, AIChE J. 32, 751-764.

    Google Scholar 

  • Bütow, E., Holzbecher, E. and Koß, V.: 1989, Approach to model the transport of leachates from a landfill site including geochemical processes, In: H. E. Kobus and W. Kinzelbach (eds), Contaminant Transport in Groundwater, A.A. Balkema, Rotterdam, pp. 183-190.

  • Cartwright, K., Griffin, R. A. and Gilkeson, R. H.: 1977, Migration of landfill leachate through glacial tills, Ground Water 15, 294-305.

    Google Scholar 

  • Cederberg, G. A., Street, R. L. and Leckie, J. O.: 1985, A groundwater mass transport and equilibrium chemistry model for multicomponent systems, Water Resour. Res. 21, 1095-1104.

    Google Scholar 

  • Chen, Y. M., Abriola, L. M., Alvarez, P. J. J., Anid, P. J. and Vogel, T. M.: 1992, Modeling transport and biodegradation of benzene and toluene in sandy aquifer material: Comparison with experimental measurements, Water Resour. Res. 28, 1833-1847.

    Google Scholar 

  • Cheng, R. T., Casulli, B. and Milford, S. N.: 1984, Eularian-Lagrangian solution of the convection-—dispersion equation in natural coordinates, Water Resour. Res. 20, 944-952.

    Google Scholar 

  • Childs, E. C. and Collis-George, N.: 1950, The permeability of porous materials, Proc. R. Soc. London, Ser.A, 201, 392-405.

    Google Scholar 

  • Chian, S. K. and Dewalle, F. B.: 1976, Sanitary landfill leachates and their treatment. J. Environ. Engrg. Div. ASCE 102, 411-431.

    Google Scholar 

  • Christensen, T. H., Kjeldsen, P., Albrechtsen, H., Heron, G., Nielsen, P. H., Bjerg, P. L. and Holm, P. E.: 1994, Attenuation of landfill leachate pollutants in aquifers, Crit. Rev. Environ. Sci. Technol. 24, 119-202.

    Google Scholar 

  • Christensen, J. B., Jensen, D. L. and Christensen, T. H.: 1996, Effect of dissolved organic carbon on the mobility of cadmium, nickel and zinc in leachate polluted groundwater, Water Res. 30, 3037-3049.

    Google Scholar 

  • Christensen, J. B., Jelle, J. B. and Christensen, T. H.: 1999, Complexation of Cu and Pb by DOC in polluted groundwater: A comparison of experimental data and predictions by computer speciation models (WHAM and MINTEQA2), Water Res. 33, 3231-3238.

    Google Scholar 

  • Clement, T. P., Hooker, B. S. and Skeen, R. S.: 1996a, Numerical modeling of biologically reactive transport near nutrient injection well, J. Environ. Engrg. 122, 833-839.

    Google Scholar 

  • Clement, T. P., Hooker, B. S. and Skeen. R. S.: 1996b, Macroscopic models for predicting changes in saturated porous media properties caused by microbial growth, Ground Water 34, 934-942.

    Google Scholar 

  • Clement, T. P., Sun, Y., Hooker, B. S. and Petersen, J. N.: 1998, Modeling multispecies reactive transport in ground water, Ground Water Monit. Remed. 18, 79-92.

    Google Scholar 

  • Corapcioglu, M. Y. and Haridas, A.: 1984, Transport and fate of microorganisms in porous media: theoretical investigation, J. Hydrol. 72, 149-169.

    Google Scholar 

  • Criddle, C. S., Alvarez, L. M. and McCarty, P. L.: 1991, Microbial processes in porous media, In: J. Bear and M. Y. Corapcioglu (eds), Transport Processes in Porous Media, Kluwer Academic Publishers, Dordrecht, Boston, pp. 641-691.

    Google Scholar 

  • Dance, J. T. and Reardon, E. J.: 1983, Migration of contaminants in groundwater at a landfill: A case study, 5. Cation migration in the dispersion test, J. Hydrol. 63, 109-130.

    Google Scholar 

  • Daus, A. D. and Frind, E. O.: 1985, An alternating direction Galerkin technique for simulation of contaminant transport in complex groundwater systems, Water Resour. Res. 21, 653-664.

    Google Scholar 

  • Davis, J. A. and Kent, D. B.: 1990, Surface complexation modeling in aqueous geochemistry, In: M. F. Hochella and A. F. White (eds), Mineral-Water Interface Geochemistry, Reviews in Mineralogy 23, Mineralogical Society of America, Washington, D.C., pp. 177-260.

    Google Scholar 

  • Davis, J. A., Coston, J. A., Kent, D. B. and Fuller, C. C.: 1998, Application of the surface complexation concept to complex mineral assemblages, Environ. Sci. Technol. 32, 2820-2828.

    Google Scholar 

  • De Blanc, P. C., McKinney, D. C. and Speitel, G. E. Jr.: 1996, Modeling subsurface biodegradation of non-aqueous phase liquids, In: M. Y. Corapcioglu (ed.), Advances in Porous Media 3, 1-86.

  • Demetracopoulos, A. C., Sehayek, L. and Erdogan, H.: 1986, Modeling leachate production from municipal landfills, J. Environ. Engrg. Div. ASCE 112, 849-866.

    Google Scholar 

  • Dhakar, S. P. and Burdige, D. J.: 1996, A coupled, non-linear, steady state model for early diagenetic processes in pelagic sediments, Am. J. Sci. 296, 296-330.

    Google Scholar 

  • El-Fadel, M., Findikakis, A. N., Leckie, J. O.: 1997, Gas simulation models for solid waste landfills, Crit. Rev. Environ. Sci. Technol. 27, 237-283.

    Google Scholar 

  • Engesgaard, P. and Kip, K. L.: 1992, A geochemical model for redox-controlled movement of mineral fronts in ground-water flow systems: A case of nitrate removal by oxidation of pyrite, Water Resour. Res. 28, 2829-2843.

    Google Scholar 

  • Fein, J. B., Daughney, C. J., Yee, N. and Davis, T. A.: 1997, A chemical equlibrium model for metal adsorption onto bacterial surfaces, Geochim. Cosmochim. Acta 61, 3319-3328.

    Google Scholar 

  • Fetter, C. W.: 1993, Contaminant Hydrology, MacMillan, New York.

    Google Scholar 

  • Freeze, R. A. and Cherry, J. A.: 1979, Groundwater, Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Forsythe, G., Malcolm, M. A. and Moler, C. B.: 1977, Computer Methods for Mathematical Computations, Prentice-Hall, Englewood Cliffs, N.J. pp. 259.

    Google Scholar 

  • Frind, E. O. and Germain, D.: 1986, Simulation of contaminant plumes with large dispersive contrast: Evaluation of alternating direction Galerkin models, Water Resour. Res. 22, 1857-1873.

    Google Scholar 

  • Frind, E. O. and Hokkanen, G. E.: 1987, Simulation of the borden plume using the alternating direction Galerkin technique, Water Resour. Res. 23, 918-930.

    Google Scholar 

  • García-Delgado, R.A. and Koussis, A. D.: 1997, Ground-water solute transport with hydrogeochemical reactions, Ground Water 35, 243-249.

    Google Scholar 

  • Gear, C. W.: 1971, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Goldberg, S.: 1995, Adsorption models incorporated into chemical equilibrium models, In: R. H. Loeppert, A. P. Schwab and S. Goldberg (eds), Chemical Equilibrium and Reaction Models, Soil Science Society of America and American Society of Agronomy, Madison, Wisconsin, USA, pp. 75-95.

    Google Scholar 

  • Gounaris, V., Anderson, P. R. and Holsen, T. M.: 1993, Characteristics and environmental significance of colloids in landfill leachate, Environ. Sci. Technol. 27, 1381-1387.

    Google Scholar 

  • Gray, W. G. and Hoffman, J. L.: 1983a, A numerical model study of ground-water contamination from Price's landfill, New Jersey, I. Data base and flow simulation, Ground Water 21, 7-14.

    Google Scholar 

  • Gray, W. G. and Hoffman, J. L.: 1983b, A numerical model study of ground-water contamination from Price's landfill, New Jersey, II. Sensivity analysis and contaminant plume simulation, Ground Water 21, 15-21.

    Google Scholar 

  • Greenberg, J. and Tomson, M.: 1992, Precipitation and dissolution kinetics and equilibria of aqueous ferrous carbonate vs temperature, Appl. Geochem. 7, 185-190.

    Google Scholar 

  • Griffin, R. A, Shimp, N. F., Steele, J. D., Ruch, R. R., White, W. A. and Hughes, G. M.: 1976, Attenuation of pollutants in municipal landfill leachate by passage through clay, Environ. Sci. Technol. 10, 1262-1268.

    Google Scholar 

  • Grove, D. B. and Wood, W. W.: 1979, Prediction and field verification of subsurface-water quality changes during artificial recharge, Lubbock, Texas, Ground Water 17, 250-257.

    Google Scholar 

  • Gureghian, A. B., Ward, D. S. and Cleary, R. W.: 1981, A finite element model for the migration of leachate from a sanitary landfill in Long Island, New York-II: Application, Water Resour. Bull. 17, 62-66.

    Google Scholar 

  • Harmsen, J.: 1983, Identification of organic compounds in leachate from a waste tip, Water Res. 17, 699-705.

    Google Scholar 

  • Harzer, J. and Kinzelbach, W.: 1989, Coupling of transport and chemical processes in numerical transport models, Geoderma 44, 115-127.

    Google Scholar 

  • Hering, J. G. and Stumm, W.: 1990, Oxidative and reductive dissolution of minerals, In: M. F. Hochella and A. F. White (eds), Mineral-Water Interface Geochemistry, Reviews in Mineralogy 23, Mineralogical Society of America, Washington, D.C., pp. 427-465.

    Google Scholar 

  • Hindmarsh, A. C. and Petzold, L. R.: 1995, Algorithm and software for ordinary differential equations and differential algebraic equations, Part II: Higher order methods and software packages, Comput. Phys. 9, 148-155.

    Google Scholar 

  • Hunter, K. S., Wang, Y. and Van Cappellen, P.: 1998, Kinetic modeling of microbially-driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry, J. Hydrol. 209, 53-80.

    Google Scholar 

  • Huyakorn, P. S. and Pinder, G. F.: 1983, Computational Methods in Subsurface Flow, Academic, San Diego, California.

    Google Scholar 

  • Huyakorn, P. S., Ungs, M. J., Mulkey, L. A. and Sudicky, E. A.: 1987, A three-dimensional analytical method for predicting leachate migration, Ground Water 25, 588-598.

    Google Scholar 

  • Huyakorn, P. S., Kool, J. B. and Blandford, T. N.: 1993, An overview of modeling technique for solute transport in groundwater, In: H. E. Allen, E. M. Perdue and D. S. Brown (eds), Metals in Groundwater, Lewis publishers, MI, pp. 139-172.

    Google Scholar 

  • IBM Canada Ltd.: 1976, Continuous System Modeling Program III (5734-X39), Program Reference Manual, IBM Canada Ltd., Ont.

    Google Scholar 

  • Inskeep, W. P. and Bloom, P. R.: 1985, An evaluation of rate equations for calcite precipitation kinetics at pCO2 less than 0.01 atm and pH greater than 8, Geochim. Cosmochim. Acta 49, 2165-2180.

    Google Scholar 

  • James, R. V. and Rubin, J.: 1979, Applicability of the local equilibrium assumption to transport through soils of solutes affected by ion exchange, In: Chemical Modeling in Aqueous Systems, ACS Symposium Series 93, American Chemical Society, Washington, D.C., USA, pp. 225-235.

    Google Scholar 

  • Jennings, A. A., Kirkner, D. J. and Theis, T. L.: 1982, Multicomponent equilibrium chemistry in groundwater quality models. Water Resour. Res. 18, 1089-1096.

    Google Scholar 

  • Jensen, D. L., Boddum, J. K., Redemenn, S. and Christensen, T. H.: 1998, Speciation of dissolved iron(II) and manganese(II) in a groundwater pollution plume, Environ. Sci. Technol. 32, 2657-2664.

    Google Scholar 

  • Johansen, O. J. and Carlson, D. A.: 1976, Characterization of sanitary landfill leachates, Water Res. 10, 1129-1134.

    Google Scholar 

  • Kehew, A. E. and Passero, R. N.: 1990, pH and redox buffer mechanisms in a glacial drift aquifer contaminated by landfill leachate, Ground Water 28, 728-737.

    Google Scholar 

  • Khanbilvardi, R. M., Ahmed, S. and Gleason, P. J.: 1995, Flow investigation for landfill leachate (FILL), J. Environ. Engrg. 121, 45-57.

    Google Scholar 

  • Kindred, J. S. and Celia, M. A.: 1989, Contaminant transport and biodegradation, 2. Conceptual model and test simulations, Water Resour. Res. 25, 1149-1159.

    Google Scholar 

  • Kinzelbach, W., Schäfer, W. and Herzer, J.: 1991, Numerical modeling of natural and enhanced denitrification processes in aquifers, Water Resour. Res. 27, 1123-1135.

    Google Scholar 

  • Kirkner, D. J., Jennings, A. A. and Theis, T. L.: 1985, Multi-solute mass transport with chemical interaction kinetics, J. Hydrol. 76, 107-117.

    Google Scholar 

  • Kjeldsen, P., Bjerg, P. L., Rügge, K., Christensen, T. H. and Pedersen, J. K.: 1998, Characterization of an old municipal landfill (Grindsted, Denmark) as a groundwater pollution source: Landfill hydrology and leachate migration, Waste Manage. Res. 16, 14-22.

    Google Scholar 

  • Knox, K and Jones, P. H.: 1979, Complexation characteristics of sanitary landfill leachates, Water Res. 13, 839-846.

    Google Scholar 

  • Konikow, L. F. and Bredehoeft, J. D.: 1974, Modeling flow and chemical quality changes in an irrigated stream-aquifer system, Water Resour. Res. 10, 546-562.

    Google Scholar 

  • Kool, J. B., Huyakorn, P. S., Sudicky, E. A. and Saleem, Z. A.: 1994, A composite modeling approach for subsurface transport of degrading contaminants from land-disposal sites, J. Contam. Hydrol. 17, 69-90.

    Google Scholar 

  • Langmuir, D.: 1997, Aqueous Environmental Geochemistry, Prentice Hall, New Jersey.

    Google Scholar 

  • Lensing, H. J., Vogt, M. and Herrling, B.: 1994, Modelling of biologically mediated redox processes in the subsurface, J. Hydrol. 159, 125-143.

    Google Scholar 

  • Lichtner, P. C.: 1985, Continuum model for simultaneous chemical reactions and mass transport in hydrothermal systems, Geochim. Cosmochim. Acta 49, 779-800.

    Google Scholar 

  • Lu, C. and Bai, H.: 1991, Leaching from solid waste landfills Part I: Modeling, Environ. Technol. 12, 545-558.

    Google Scholar 

  • Ludvigsen, L., Albrechtsen, H. J., Bjerg, P. L. and Christensen, T. H.: 1998, Anaerobic microbial processes in a leachate contaminated aquifer (Grindsted, Denmark), J. Contam. Hydrol. 33, 173-291.

    Google Scholar 

  • Lyngkilde, J. and Christensen, T. H.: 1992a, Fate of organic contaminants in the redox zones of a landfill leachate pollution plume (Vejen, Denmark), J. Contam. Hydrol. 10, 291-307.

    Google Scholar 

  • Lyngkilde, J. and Christensen, T. H.: 1992b, Redox zones of a landfill leachate pollution plume (Vejen, Denmark), J. Contam. Hydrol. 10, 273-289.

    Google Scholar 

  • MacQuarrie, K. T. B., Sudicky, E. A. and Frind, E. O.: 1990, Simulation of biodegradable organic contaminants in groundwater 1. Numerical formulation in principal directions, Water Resour. Res. 26, 207-222.

    Google Scholar 

  • Mangold, D. C. and Tsang, C. F.: 1991, A summary of subsurface hydrological and hydrochemical models, Rev. Geophys. 29, 51-79.

    Google Scholar 

  • Mattigod, S. V. and Zachara, J. M.: 1996, Equilibrium modeling in soil chemistry, In: J. M. Bigham (ed.), Methods of Soil Analysis. Part 3. Chemical Methods, Soil Science Society of America, and American Society of Agronomy, Madison, Wisconsin, USA, pp. 1309-1358.

    Google Scholar 

  • McNab, W. W. Jr. and Narasimahan, T. N.: 1994, Modeling reactive transport of organic compounds in groundwater using a partial redox disequilibrium approach, Water Resour. Res. 30, 2619-2635.

    Google Scholar 

  • McNab, W. W. Jr. and Narasimhan, T. N.: 1995, Reactive transport of petroleum hydrocarbon constituents in a shallow aquifer: Modeling geochemical interactions between organic and inorganic species, Water Resour. Res. 31, 2027-2033.

    Google Scholar 

  • Miller, C. W. and Benson, L. V.: 1983, Simulation of solute transport in a chemically reactive heterogeneous system: Model development and application, Water Resour. Res. 19, 381-391.

    Google Scholar 

  • Mills, W. B., Liu, S. and Fong, F. K.: 1991, Literature review and model (COMET) for colloid/metals transport in porous media, Ground Water 29, 199-208.

    Google Scholar 

  • Molz, F. J., Widdowsen, M. A. and Benefield, L. D.: 1986, Simulation of microbial growth dynamics coupled to nutrient and oxygen transport in porous media, Water Resour. Res. 22, 1207-1216.

    Google Scholar 

  • Morel, F. M. M. and Hering, J. G.: 1993, Principles and Applications of Aquatic Chemistry, Wlley, New York, p. 588.

    Google Scholar 

  • Morel, F. and Morgan, J.: 1972, A numerical method for computing equilibria in aqueous chemical systems, Environ. Sci.Technol. 6, 58-67.

    Google Scholar 

  • Narasimhan, T. N. and Witherspoon, P. A.: 1976, An integrated finite difference method for analyzing fluid flow in porous media, Water Resour. Res. 12, 57-64.

    Google Scholar 

  • Narasimhan, T. N., White, A. F. and Tokunaga, T.: 1986, Groundwater contamination from an inactive uranium mill tailings pile, 2, Application of a dynamic mixing model, Water Resour. Res. 22, 1820-1834.

    Google Scholar 

  • Nelson, A.: 1995, Landfill leakage and biofilms — can we rely on self clogging mechanisms, Proc. of the 7th annual conf. of the Waste Management Institute NZ, Auckland, New Zealand, pp. 431-442.

  • Nicholson, R. V., Cherry, J. A. and Reardon, E. J.: 1983, Migration of contaminants in groundwater at a landfill: A case study, VI. Hydrogeochemistry, J. Hydrol. 63, 131-142.

    Google Scholar 

  • Nordstorm, D. K. et al.: 1979, A comparison of computerized chemical models for equilibrium calculations in aqueous systems, In: Chemical Modeling in Aqueous Systems, ACS Symposium Series 93, American Chemical Society, Washington, D.C., USA. pp. 857-892.

    Google Scholar 

  • Panda, M. N. and Lake, L. W.: 1994, Estimation of single-phase permeability from parameters of particle-size distribution, Am. Assoc. Petrol. Geol. Bull. 78, 1028-1039.

    Google Scholar 

  • Park, S. S. and Jaffé, P. R.: 1996, Development of a sediment redox potential model for the assessment of postdepositional metal mobility, Ecol. Modell. 91, 169-181.

    Google Scholar 

  • Parkhurst, D. L., Thorstensen, D. C. and Plummer, L. N.: 1980, PHREEQE: A Computer Program for Geochemical Calculations, U.S. Geol. Surv. Water Resour. Invest., PB81-167801.

  • Pease, R. W. and Adrian, D. D.: 1978, Complexation between organic molecules and iron in anaerobic landfill leachate, Proceedings of the 33rd Industrial Waste Conference, Purdue University, Lafayette, Indiana, pp. 219-224.

    Google Scholar 

  • Pickens, J. F. and Lennox, W. C.: 1976, Numerical simulation of waste movement in steady groundwater flow systems, Water Resour. Res. 12, 171-180.

    Google Scholar 

  • Plummer, L. N., Wigley T. M. L. and Parkhurst, D. L.: 1978, The kinetics of calcite dissolution in CO2 water systems at 5 to 60°C and 0.0 to 1.0 atm CO2, Am. J. Sci. 278, 179-216.

    Google Scholar 

  • Plummer, L. N., Parkhurst, D. L. and Thorstensen, D. C.: 1983, Development of reaction models for groundwater systems, Geochim. Cosmochim. Acta 47, 665-686.

    Google Scholar 

  • Postma, D., Boesen, C., Kristiansen, H. and Larsen, F.: 1991, Nitrate reduction in an unconfined sandy aquifer: Water chemistry, reduction processes and geochemical modeling, Water Resour. Res. 27, 2027-2046.

    Google Scholar 

  • Quigley, R. M., Fernandez, F., Yanful, E., Helgason, T., Margaritis, A. and Whitby, J. L.: 1987, Hydraulic conductivity of contaminated natural clay directly below a domestic landfill, Can. Geotech. J. 24, 377-383.

    Google Scholar 

  • Reardon, E. J.: 1981, Kd's — Can they be used to describe reversible ion sorption reaction in contaminant migration? Ground Water 19, 279-286.

    Google Scholar 

  • Reed, M. H.: 1982, Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals, gases, and an aqueous phase, Geochim. Cosmochim. Acta 46, 513-528.

    Google Scholar 

  • Rickard, D.: 1995, Kinetics of FeS precipitation: Part 1. Competing reaction mechanisms, Geochim. Cosmochim. Acta 59, 4367-4379.

    Google Scholar 

  • Rittmann, B. E. and McCarty, P. L.: 1980, Model of steady-state-biofilm kinetics, Biotechnol. Bioeng. 22, 2343-2357.

    Google Scholar 

  • Rittmann, B. E. and VanBriesen, J. M.: 1996, Microbiological processes in reactive modeling, In: P. C. Lichtner, C. I. Steefel and E. H. Oelkers (eds), Reactive Transport in Porous Media, Reviews in Mineralogy, 34, Mineralogical Society of America, Washington, D.C., pp. 311-334.

    Google Scholar 

  • Rittmann, B. E., McCarty, P. L. and Roberts, P. V.: 1980, Trace-organics biodegradation in aquifer recharge, Ground Water 18, 236-243.

    Google Scholar 

  • Rittmann, B. E., Fleming, I. R. and Rowe, R. K.: 1996, Leachate chemistry: Its implication for clogging, North American Water and Environment Congress '96, Anaheim, CA. June, paper 4 (CD Rom) 6p, Session GW-1, Biological Processes in Groundwater Quality.

  • Rowe, R. K.: 1987, Pollutant transport through barriers, In: R. D. Woods (ed.), Geotechnical Practice for Waste Disposal, Geotechnical Special Publication No. 13, ASCE, pp. 159-181.

  • Rowe, R. and Booker, J. R.: 1985a, 1-D pollutant migration in soils of finite depth, J. Geotech. Engrg. ASCE, 111, 479-499.

    Google Scholar 

  • Rowe, R. and Booker, J. R.: 1985b, 2-D pollutant migration in soils of finite depth, Can. Geotech. J. 22, 429-436.

    Google Scholar 

  • Rowe, R. and Booker, J. R.: 1986, A finite layer technique for calculating three-dimensional pollutant migration in soil, Geotechnique 36, 205-214.

    Google Scholar 

  • Rowe, R. K. and Booker, J. R.: 1990, Program POLLUTE v.5-1D Pollutant Migration through a Non-homogeneous Soil: User's Manual, Geotechnical Research Centre, University of Western Ontario, London, Canada.

    Google Scholar 

  • Rowe, R. K. and Fraser, M. J.: 1993a, Long-term behaviour of engineered barrier systems, Proceedings Sardinia 93, 4th International Landfill Symposium, Cagliari, Italy, 397-406.

  • Rowe, R. K. and Fraser, M. J.: 1993b, Service life of barrier systems in the assessment of contaminant impact, Proceedings of Joint CSCE-ASCE National Conference on Environmental Engineering, Montreal, Canada, pp. 1217-1224.

  • Rowe, R. K.: 1991, Contaminant impact assessment and the contaminating lifespan of landfills, Can. J. Civ. Eng. 18, 244-253.

    Google Scholar 

  • Rowe, R. K., Quigley R. M. and Booker, J. R.: 1995, Clayey Barrier Systems for Waste Disposal Facilities, E & FN Spon, London, UK.

    Google Scholar 

  • Rowe, R. K., Hrapovic, L. and Armstrong, M. D.: 1996, Diffusion of organic pollutants through HDPE geomembrane and composite liners and its influence on groundwater quality, Proceedings of 1st European Geosynthetics Conference, Maastricht, pp. 737-742.

  • Rowe, R. K., Fleming, I. R., Armstrong, M. D., Cooke, A. J., Cullimore, D. R., Rittmann, B. E., Bennestt, P. and Longstaffe, F. J.: 1997a, Recent advances in understanding the clogging of leachate collection systems, Proceedings Sardinia 97, 6th International Landfill Symposium, Cagliari, Italy, 3, pp. 383-390.

    Google Scholar 

  • Rowe, R. K., Cooke, A. J., Rittmann, B. E. and Fleming, I.: 1997b, Some considerations in numerical modelling of leachate collection system clogging, Proceedings of 6th International Symposiums on Numerical Models in Geomechanics — NUMOG VI, Montreal, Canada, pp. 277-282.

  • Rubin, J.: 1983, Transport of reacting solutes in porous media: Relation between mathematical nature of problem formulation and chemical nature of reactions, Water Resour. Res. 19, 1231-1252.

    Google Scholar 

  • Rubin, J. and James, R. V.: 1973, Dispersion-affected transport of reacting solutes in saturated porous media: Galerkin method applied to equilibrium controlled exchange in unidirectional steady water flow, Water Resour. Res. 9, 1332-1356.

    Google Scholar 

  • Rügge, K., Bjerg, P. L. and Christensen, T. H.: 1995, Distribution of organic compounds from municipal solid waste in the groundwater downgradient of a landfill (Grindsted, Denmark), Environ. Sci. Technol. 29, 1395-1414.

    Google Scholar 

  • Salvage, K. M. and Yeh, G. T.: 1998, Development and application of a numerical model of kinetic and equilibrium microbiological and geochemical reactions (BIOKEMOD), J. Hydrol. 209, 27-52.

    Google Scholar 

  • Schäfer, D., Schäfer, W. and Kinzelbach, W.: 1998, Simulation of reactive processes relative to biodegradation in aquifers 1. Structure of the three-dimensional reactive transport model, J. Contam. Hydrol. 31, 167-186.

    Google Scholar 

  • Schroeder, P. R., Gibson, A. C. and Smolen, M. D.: 1984, The Hydrologic Evaluation of Landfill Performance (HELP) Model, Vol II, Documentation for Version 1, U.S. Environ. Prot. Agency, Cincinnati, Ohio.

    Google Scholar 

  • Schulz, H. D. and Reardon, E. J.: 1983, A combined mixing cell/analytical model to describe twodimensional reactive solute transport for unidirectional groundwater flow, Water Resour. Res. 19, 493-502.

    Google Scholar 

  • Shen, H. and Nikolaidis, N. P.: 1997, A direct substitution method for multicomponent solute transport in ground water, Ground Water 35, 67-78.

    Google Scholar 

  • Skopp, J.: 1986, Analysis of time-dependent chemical processes in soils, J. Environ. Qual. 15, 205-213.

    Google Scholar 

  • Smith, S. L. and Jaffé, P. R.: 1998, Modeling the transport and reaction of trace metals in watersaturated soils and sediments. Water Resour. Res. 34, 3135-3147.

    Google Scholar 

  • Sposito, G.: 1984, Chemical models of inorganic pollutants in soils, CRC Crit. Rev. Environ. Cont. 15, 1-24.

    Google Scholar 

  • Sposito, G. and Mattigod, S. V.: 1980, GEOCHEM: A Computer Program for the Calculation of Chemical Equilibria in Soil Solutions and other Natural Water Systems, Kearney Foundation of Soil Science, Univ. of Calif., Riverside, California.

    Google Scholar 

  • Steefel, C. I. and Lasaga, A. C.: 1990, Evolution of dissolution patterns: permeability change due to coupled flow and reaction, In: D. C. Melchoir and R. L. Bassett (eds), Chemical Modeling of Aqueous Systems II, ACS Symposium Series 416, American Chemical Society, pp. 212-225.

  • Steefel, C. I. and Lasaga, A. C.: 1994, A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems, Am. J. Sci. 294, 529-592.

    Google Scholar 

  • Steefel, C. I. and MacQuarrie, K. T. B.: 1996, Approaches to modeling of reactive transport in porous media, In: P.C. Lichtner, C. I. Steefel and E. H. Oelkers (eds), Reactive Transport in Porous Media, Reviews in Mineralogy, 34, Mineralogical Society of America, Washington, D.C., pp. 83-129.

    Google Scholar 

  • Sternbeck, J.: 1997, Kinetics of rhodochrosite crystal growth at 25°C: The role of surface speciation, Geochim. Cosmochim. Acta 61, 785-793.

    Google Scholar 

  • Strang, G.: 1968, On the construction and comparison of difference schemes, SIAM J. Numer. Anal. 5, 506-517.

    Google Scholar 

  • Straub, W. A. and Lynch, D. R.: 1982, Models of landfill and leaching: Moisture flow and inorganic strength, J. Environ. Engrg. Div. ASCE 108, 231-250.

    Google Scholar 

  • Stumm, W. and Morgan, J. J.: 1996, Aquatic Chemistry, Chemical Equilibria and Rates in Natural Waters, Wiley, New York.

    Google Scholar 

  • Sudicky, E. A.: 1989, The Laplace transform Galerkin tecnique: A time-continuous finite element theory and application of mass transport in groundwater, Water Resour. Res. 25, 1833-1846.

    Google Scholar 

  • Sykes, J. F., Pahwa, S. B., Lantz, R. B. and Ward, D. S.: 1982a, Numerical simulation of flow and contaminant migration at an extensively monitored landfill, Water Resour. Res. 18, 1687-1704.

    Google Scholar 

  • Sykes, J. F., Soyupak, S. and Farquhar, G. J.: 1982b, Modeling of leachate organic migration and attenuation in groundwaters below sanitary landfills, Water Resour. Res. 18, 135-145.

    Google Scholar 

  • Taylor, S. W. and Jaffé, P. R.: 1990, Substrate and biomass transport in a porous medium, Water Resour. Res. 26, 2181-2194.

    Google Scholar 

  • Taylor, S. W., Milly, P. C. D. and Jaffé, P. R.: 1990, Biofilm growth and the related changes in the physical properties of a porous medium, 2. Permeability. Water Resour. Res. 26, 2161-2169.

    Google Scholar 

  • Tebes-Stevens, C., Valocchi, A. J., VanBriesen, J. M. and Rittmann, B.E.: 1998, Multicomponent transport with coupled geochemical and microbiological reactions: model description and example simulations, J. Hydrol. 209, 8-26.

    Google Scholar 

  • Tipping, E.: 1994, WHAM: a chemical equilibrium model and computer code for waters, sediments and soils incorporating a discrete site/electrostatic model of ion binding by humic substances, Comput. Geosci. 20, 973-1023.

    Google Scholar 

  • Travis, C. C. and Etnier, E. L.: 1981, A survey of sorption relationships for reactive solutes in soil, J. Environ. Qual. 10, 8-17.

    Google Scholar 

  • Valocchi, A. J.: 1985, Validity of the local equilibrium assumption for modeling sorbing solute transport through homogeneous soils, Water Resour. Res. 21, 808-820.

    Google Scholar 

  • Valocchi, A. J. and Malmstead, M.: 1992, Accuracy of operator splitting for advection-dispersionreaction problems, Water Resour. Res. 28, 1471-1476.

    Google Scholar 

  • Valocchi, A. J., Street, R. L. and Roberts, P. V.: 1981, Transport of ion-exchanging solute in groundwater: chromatographic theory and field simulation. Water Resour. Res. 17, 1517-1527.

    Google Scholar 

  • Van Breukelen, B. M., Appelo, C. A. J. and Olsthoorn, T. N.: 1998, Hydrogeochemical transport modeling of 24 years of Rhine water infiltration in the dunes of the Amsterdam Water Supply, J. Hydrol. 209, 281-296.

    Google Scholar 

  • Van Cappellen, P. and Wang, Y.: 1995, Metal cycling in surface sediments: modeling the interplay of transport and reaction, In: H.E. Allen (ed.), Metal Contaminated Aquatic Sediments, Ann Arbor Press, London, pp. 21-64.

    Google Scholar 

  • van Genuchten, M. T. and Alves, W. J.: 1982, Analytical solutions of the one-dimensional convective-dispersive solute transport equation. USDA-ARS Tech. Bull. 1661, U.S. Dept. of Agriculture, Washington, D.C.

    Google Scholar 

  • Verma A. and Pruess, K.: 1988, Thermohydrological conditions and silica redistribution near high-level nuclear wastes emplaced in saturated geological formations, J. Geophys. Res. 93, 1159-1173.

    Google Scholar 

  • Vandevivere, P., Baveye, P., de Lozada, D. S. and Deleo, P.: 1995, Microbial clogging of saturated soils and aquifer materials: Evaluation of mathematical models, Water Resour. Res. 31, 2173-2180.

    Google Scholar 

  • Wang, Y. and Van Cappellen, P.: 1996, A multicomponent reactive transport model of early diagenesis: application to redox cycling in coastal marine sediments, Geochim. Cosmochim. Acta 60, 2993-3014.

    Google Scholar 

  • Walsh, M. P., Bryant, S. L., Schechter, R. S. and Lake. L. W.: 1984, Precipitation and dissolution of solids attending flow through porous media, AIChE J. 30, 317-328.

    Google Scholar 

  • Walter, A. L., Frind, E. O., Blowers, D. W., Ptacek, C. J. and Molson, J. W.: 1994, Modeling of multicomponent reactive transport in groundwater-1.Model development and evaluation, Water Resour. Res. 30, 3137-3148.

    Google Scholar 

  • Warren, L. A. and Ferris, F. G.: 1998, Continuum between sorption and precipitation of Fe(III) on microbial surfaces, Environ. Sci. Technol. 32, 2331-2337.

    Google Scholar 

  • Weber, W. J. Jr., McGinley, P. M. and Katz, L. E.: 1991, Sorption phenomena in subsurface systems: Concepts, models and effects on contaminant fate and transport, Water Res. 25, 499-528.

    Google Scholar 

  • Weir, G. J. and White, S. P.: 1996, Surface deposition from fluid flow in a porous medium, Transport in Porous Media 25, 79-96.

    Google Scholar 

  • Wen, X., Du, Q. and Tang, H.: 1998, Surface complexation model for the heavy metal adsorption on natural sediment, Environ. Sci. Technol. 32, 870-875.

    Google Scholar 

  • Westall, J. C., Zachary, J. L. and Morel, F. M. M.: 1976, MINEQL: A Computer Program for the Calculation of Chemical Equilibrium Composition of Aqueous System, Tech. Note 18, Dept. of Civ. Eng., MIT, Cambridge.

    Google Scholar 

  • Widdowson, M. A., Molz, F. J. and Benefield, L. D.: 1988, A numerical transport model for oxygen and nitrate-based respiration linked to substrate and nutrient availability in porous media, Water Resour. Res. 24, 1553-1565.

    Google Scholar 

  • Wu, G. and Li, L. Y.: 1998, Modeling of heavy metal migration in sand/bentonite and the leachate pH effect, J. Contam. Hydrol. 33, 313-336.

    Google Scholar 

  • Yanful, E. K., Quigley, R. M. and Nesbitt, H. W.: 1988, Heavy metal migration at a landfill site, Sarnia, Ontario, Canada-2: Metal partitioning and geotechnical implications, Appl. Geochem. 3, 623-629.

    Google Scholar 

  • Yates, M. V. and Yates, S. R.: 1988, Modeling microbial fate in the subsurface environment, CRC Crit. Rev. Environ. Cont. 17, 307-345.

    Google Scholar 

  • Yeh, G. T. and Tripathi, V. S.: 1989, A critical evaluation of recent developments in hydrogeochemical transport models of reactive multichemical components, Water Resour. Res. 25, 93-108.

    Google Scholar 

  • Yeh, G. T. and Tripathi, V. S.: 1991, A model for simulating transport of reactive multispecies components: Model development and demonstration, Water Resour. Res. 27, 3075-3094.

    Google Scholar 

  • Young, T. R. and Boris, J. P.: 1977, A numerical technique for solving stiff ordinary differential equations associated with the chemical kinetics of reactive-flow problems, J. Phys. Chem. 81, 2424-2427.

    Google Scholar 

  • Zysset, A. and Stauffer, F.: 1992, Modeling of microbial processes in groundwater infiltration systems, In: T. F. Russell, R. E. Ewing, C. A. Brebbia, W. G. Gray and G. F. Pinder (eds), Mathematical Modeling in Water Resources, Computational Mechanics Publications, Billerica, Mass., pp. 325-332.

    Google Scholar 

  • Zysset, A., Stauffer, F. and Dracos, T.: 1994a, Modeling of chemically reactive groundwater transport, Water Resour. Res. 30, 2217-2228.

    Google Scholar 

  • Zysset, A., Stauffer, F. and Dracos, T.: 1994b, Modeling of reactive groundwater transport governed by biodegradation, Water Resour. Res. 30, 2423-2434.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naresh Singhal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Islam, J., Singhal, N. & O'Sullivan, M. Modeling Biogeochemical Processes in Leachate-Contaminated Soils: A Review. Transport in Porous Media 43, 407–440 (2001). https://doi.org/10.1023/A:1010737825232

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010737825232

Navigation