Skip to main content
Log in

Poisson Equations Associated with Differential Second Quantization Operators in White Noise Analysis

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

In this paper we shall show the heredity of a differentiable one-parameter semigroup under the second quantization and then discuss the resolvent of the differential second quantization operator and the potentials of test white noise functionals. As an application, we shall investigate the existence of solutions of the Poisson-type equations associated with differential second quantization operators as well as operators similar to differential second quantization operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carmona, R.: Potentials on abstract Wiener space, J. Funct. Anal. 26(1977), 215–230.

    Google Scholar 

  2. Chung, C.-H., Chung, D. M. and Ji, U. C.: One-parameter groups and cosine families of operators on white noise functions, J. Korean Math. Soc. 37(2000), 687–705.

    Google Scholar 

  3. Chung, D. M., Chung, T. S. and Ji, U. C.: A simple proof of analytic characterization theorem for operator symbols, Bull. Korean Math. Soc. 34(1997), 421–436.

    Google Scholar 

  4. Chung, D. M., Chung, T. S. and Ji, U. C.: Products of white noise functionals and associated derivations, J. Korean Math. Soc. 35(1998), 559–574.

    Google Scholar 

  5. Chung, D. M. and Ji, U. C.: Transformation groups on white noise functionals and their applications, Appl. Math. Optim. 37(1998), 205–223.

    Google Scholar 

  6. Chung, D. M. and Ji, U. C.: Some Cauchy problems in white noise analysis and associated semigroups of operators, Stochastic Anal. Appl. 17(1999), 1–22.

    Google Scholar 

  7. Chung, D. M. and Ji, U. C.: Transformations on white noise functionals with their applications to Cauchy problems, Nagoya Math. J. 147(1997), 1–23.

    Google Scholar 

  8. Chung, D. M., Ji, U. C. and Obata, N.: Higher powers of quantum white noises in terms of integral kernel operators, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 1(1998), 533–559.

    Google Scholar 

  9. Cochran, W. G., Kuo, H.-H. and Sengupta, A.: A new class of white noise generalized functions, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 1(1998), 43–67.

    Google Scholar 

  10. Gross, L.: Potential theory on Hilbert space, J. Funct. Anal. 1(1967), 123–181.

    Google Scholar 

  11. Hida, T.: Analysis of Brownian Functionals, Carleton Math. Lecture Notes 13, Carleton University, Ottawa, 1975.

  12. Hida, T., Obata, N. and Saitô, K.: Infinite dimensional rotations and Laplacians in terms of white noise calculus, Nagoya Math. J. 128(1992), 65–93.

    Google Scholar 

  13. Hida, T., Kuo, H.-H. and Obata, N.: Transformations for white noise functionals, J. Funct. Anal. 111(1993), 259–277.

    Google Scholar 

  14. Hida, T., Kuo, H.-H., Potthoff, J. and Streit, L. (eds): White Noise: An Infinite Dimensional Calculus, Kluwer Acad. Publ., Dordrecht, 1993.

    Google Scholar 

  15. Kang, S. J.: Heat and Poisson equations associated with number operator in white noise analysis, Soochow J. Math. 20(1994), 45–55.

    Google Scholar 

  16. Kondratiev, Yu. G. and Streit, L.: Spaces of white noise distributions: Constructions, descriptions, applications I, Rep. Math. Phys. 33(1993), 341–366.

    Google Scholar 

  17. Kubo, I. and Takenaka, S: Calculus on Gaussian white noise I–IV, Proc. Japan Acad. A 56 (1980), 376–380; 411–416; 57 (1981), 433–437; 58 (1982), 186–189.

    Google Scholar 

  18. Kuo, H.-H.: Potential theory associated with Uhlenbeck–Ornstein process, J. Funct. Anal. 21 (1976), 63–75.

    Google Scholar 

  19. Kuo, H.-H.: On Laplacian operators of generalized Brownian functionals, In: K. Itô and T. Hida (eds), Stochastic Processes and Applications, Lecture Notes in Math. 1203, Springer, New York, 1986, pp. 119–128.

    Google Scholar 

  20. Kuo, H.-H.:Stochastic differential equations of generalized Brownian functionals, Lecture Notes in Math. 1390, Springer, New York, 1989, pp. 138–146.

    Google Scholar 

  21. Kuo, H.-H.: White Noise Distribution Theory, CRC Press, Boca Raton, 1996.

    Google Scholar 

  22. Lee, Y.-J.: Applications of the Fourier–Wiener transform to differential equations on infinite dimensinal space, I, Trans. Amer. Math. Soc. 262(1980), 259–283.

    Google Scholar 

  23. Obata, N.: An analytic characterization of symbols of operators on white noise functionals, J. Math. Soc. Japan 45(1993), 421–445.

    Google Scholar 

  24. Obata, N.: White Noise Calculus and Fock Space, Lecture Notes in Math. 1577, Springer, New York, 1994.

    Google Scholar 

  25. Piech, M. A.: Parabolic equations associated with the number operator, Trans. Amer. Math. Soc. 194(1974), 213–222.

    Google Scholar 

  26. Potthoff, J. and Streit, L.: A characterization of Hida distributions, J. Funct. Anal. 101(1991), 212–229.

    Google Scholar 

  27. Saitô, K.: A C0-group generated by the Lévy Laplacian II, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 1(1998), 425–437.

    Google Scholar 

  28. Yosida, K.: Functional Analysis, 6th edn, Springer, New York, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, D.M., Ji, U.C. Poisson Equations Associated with Differential Second Quantization Operators in White Noise Analysis. Acta Applicandae Mathematicae 63, 89–100 (2000). https://doi.org/10.1023/A:1010724103207

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010724103207

Navigation