Earth, Moon, and Planets

, Volume 87, Issue 1, pp 11–55 | Cite as

Origin, Bulk Chemical Composition And Physical Structure Of The Galilean Satellites Of Jupiter: A Post-Galileo Analysis

  • A. J. R. Prentice

Abstract

The origin of Jupiter and the Galilean satellite system is examinedin the light of the new data that has been obtained by the NASA Galileo Project. In particular, special attention is given to a theory of satellite origin which was put forward at the start of the Galileo Mission and on the basis of which several predictions have now been proven successful (Prentice, 1996a–c). These predictions concern the chemical composition of Jupiter's atmosphere and the physical structure of the satellites. According to the proposed theory of satellite origin, each of the Galilean satellites formed by chemical condensation and gravitational accumulation of solid grains within a concentricfamily of orbiting gas rings. These rings were cast off equatorially by the rotating proto-Jovian cloud (PJC) which contracted gravitationally to form Jupiter some 4\(\frac{1}{2}\) billion years ago. The PJC formed from the gas and grains left over from the gas ring that had been shed at Jupiter's orbit by the contracting proto-solar cloud (PSC). Supersonic turbulentconvection provides the means for shedding discrete gas rings.The temperatures Tn of the system of gas rings shed by the PSCand PJC vary with their respective mean orbital radii Rn (n = 0, 1, 2, Ϊ ) according as Tn ∝ Rn-0.9. If the planet Mercury condenses at 1640 K, so accounting for the high density ofthat planet via a process of chemical fractionation between iron and silicates, then Tn at Jupiter's orbit is 158 K. Only 35% of the water vapour condenses out. Thus fractionation between rock and ice, together with an enhancement in the abundance of solids relative to gas which takes place through gravitational sedimentation of solids onto the mean orbit of the gas ring, ensures nearly equal proportions of rock and ice in each of Ganymede and Callisto. Io and Europa condense above the H2O ice point and consist solely of hydrated rock (h-rock). The Ganymedan condensate consists of h-rock and H2O ice. For Callisto, NH3 ice makes up ∼5% of the condensate mass next to h-rock (∼50%) and H2O ice (∼45%).

Detailed thermal and structural models for each of Europa, Ganymedeand Callisto are constructed on the basis of the above initial bulk chemicalcompositions. For Europa (E), a predicted 2-zone model consisting of a dehydrated rock core of mass 0.912ME and a 150 km thick frozen mantle of salty H2O yields a moment-of-inertiacoefficient which matches the Galileo Orbiter gravity measurement. For Ganymede (G), a 3-zone model possessing an inner core of solid FeS and mass ∼0.116MG, and an outer H2O ice mantle of mass ∼0.502MG is needed to explain the gravity data.Ganymede's native magnetic field was formed by thermoremanent magnetization of Fe3O4. A new Callisto (C) model is proposed consisting of a core of mass 0.826MC containing a uniform mixture of h-rock (60% by mass) and H2O and NH3 ices, and capped by a mantle of pure ice. This model may have the capacity to yield a thin layer of liquid NH3ċ2H2O at the core boundary, in line with Galileo's discovery of an induced magnetic field

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad, N. and Phillips, W. A.: 1987, ‘Thermal Conductivity of Ice and Ice Clathrate’, Solid State Commun. 63, 167–171.CrossRefADSGoogle Scholar
  2. Anders, E. and Grevesse, N.: 1989, ‘Abundances of the Elements: Meteoritic and Solar’, Geochim. Cosmochim. Acta 53, 197–214.CrossRefADSGoogle Scholar
  3. Anderson, J. D., Colombo, G., Esposito, P. B., Lau, E. L., and Trager, G. B.: 1987, ‘The Mass and Gravity Field of Mercury’, Icarus 71, 337–349.CrossRefADSGoogle Scholar
  4. Anderson, J. D., Lau, E. L., Sjogren, W. L., Schubert, G., and Moore, W. B.: 1996a, ‘Gravitational Constraints on the Internal Structure of Ganymede’, Nature 384, 541–543.CrossRefADSGoogle Scholar
  5. Anderson, J. D., Sjogren, W. L., and Schubert, G.: 1996b, ‘Galileo Gravity Results and the Internal Structure of Io’, Science 272, 709–712.ADSGoogle Scholar
  6. Anderson, J. D., Lau, E. L., Sjogren, W. L., Schubert, G., and Moore, W. B.: 1997a, ‘Gravitational Evidence for an Undifferentiated Callisto’, Nature 387, 264–266.CrossRefADSGoogle Scholar
  7. Anderson, J. D., Lau, E. L., Sjogren, W. L., Schubert, G., and Moore, W. B.: 1997b, ‘Europa's Differentiated Internal Structure: Inferences from Two Galileo Encounters’, Science 276, 1236–1239.CrossRefADSGoogle Scholar
  8. Anderson, J. D., Schubert, G. Jacobson, R. A., Lau, E. L., Moore, W. B., and Sjogren, W. L.: 1998a, ‘Distribution of Rock, Metals and Ices in Callisto’, Science 280, 1573–1576.CrossRefADSGoogle Scholar
  9. Anderson, J. D., Schubert, G., Jacobson, R. A., Lau, E. L., Moore, W. B., and Sjogren, W. L.: 1998b, ‘Europa's Differentiated Internal Structure: Inferences from Four Galileo Encounters’, Science 281, 2019–2022.CrossRefADSGoogle Scholar
  10. Bridgman, P. W.: 1912, ‘Water, in the Liquid and Five Solid Forms, under Pressure’, Proc. Amer. Acad. Arts Sci. 47, 441–558.Google Scholar
  11. Bridgman, P. W.: 1935, ‘The Pressure-Volume-Temperature Relations of the Liquid, and the Phase Diagram of Heavy Water’, J. Chem. Phys. 3, 597–605.CrossRefADSGoogle Scholar
  12. Bridgman, P.W.: 1937, ‘The Phase Diagram ofWater to 45,000 kg/cm2’, J. Chem. Phys. 5, 964–966.CrossRefADSGoogle Scholar
  13. Brown, A. J. and Whalley, E.: 1966, ‘Preliminary Investigation of the Phase Boundaries between Ice VI and VII and Ice VI and VIII’, J. Chem. Phys. 45, 4360–4361.CrossRefADSGoogle Scholar
  14. Campbell, J. K. and Synott, S. P.: 1985, ‘Gravity Field of the Jovian System from Pioneer and Voyager Tracking Data’, Astron. J. 90, 364–372.CrossRefADSGoogle Scholar
  15. Carr, M. J. and 21 colleagues: 1998, ‘Evidence for a Subsurface Ocean on Europa’, Nature 391, 363–368.CrossRefADSGoogle Scholar
  16. Cohen, E. R. and Taylor, B. N.: 1987, ‘The 1986 Adjustment to the Fundamental Physical Constants’, Rev. Mod. Phys. 59, 1121–1148.CrossRefADSGoogle Scholar
  17. Consolmagno, G. J. and Lewis, J. S.: 1978, ‘The Evolution of Icy Satellite Interiors and Surfaces’, Icarus 34, 280-293.CrossRefADSGoogle Scholar
  18. Crary, F. J. and Bagenal, F.: 1996, ‘Remanent Magnetism and Ganymede's Internal Magnetic Field’, Bull. Amer. Astron. Soc. 28, 1075.ADSGoogle Scholar
  19. Crary, F. J. and Bagenal F.: 1998, ‘Remanent Magnetism and the Interior Structure of Ganymede’, J. Geophys. Res. 103, 25757–25773.CrossRefADSGoogle Scholar
  20. Croft, S. K., Lunine, J. L., and Kargel, J.: 1988, ‘Equation of State of Ammonia-Water Liquid: Derivation and Planetological Applications’, Icarus 73, 279–293.CrossRefADSGoogle Scholar
  21. Dantl, G.: 1968, ‘Die elastichen Moduln von Eis-Einkristallen', Phys. Condens. Mater. 7, 390–397.Google Scholar
  22. Davies, M. E., Abalakin, V. K., Brahic, A., Bursa, M., Chovitz, B. H., Lieske, J. H., Siedelmann, P. K., Sinclair, A. T., and Tjuflin, Y. S.: 1992, ‘Report of the IAU/IAG/COSPARWorking Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites: 1991’, Celest. Mech. Dyn. Astron. 53, 377–397.CrossRefADSGoogle Scholar
  23. Davies, M. E., Colvin, T. R., Oberst, J., Zeitler, W., Schuster, P., Neukum, G., McEwen, A. S., Phillips, C. B., Thomas, P. C., Veverka, J., Belton, M. J. S., and Schubert, G.: 1998, ‘The Control Networks of the Galilean Satellites and Implications for Global Shape’, Icarus 135, 372–376.CrossRefADSGoogle Scholar
  24. Dillard, D. S. and Timmerhaus, K. D.: 1966, ‘Low Temperature Thermal Conductivity of Solidified H2O and D2O’, Pure Appl. Cryogen 4, 35–44.Google Scholar
  25. Dunlop, D. J. and Özdemir, Ö.: 1997, Rock Magnetism: Fundamentals and Frontiers, Cambridge University Press, Cambridge, p. 5.Google Scholar
  26. Dyt, C. P.: 1997, Numerical Simulation of Supersonic Turbulent Convection and its Relation to the Modern Laplacian Theory of Solar System Origin, Ph.D. Thesis, Monash University, Australia.Google Scholar
  27. Dyt, C. P. and Prentice, A. J. R.: 1998, ‘A Numerical Simulation of Supersonic Thermal Convection’, Mon. Not. Roy. Astron. Soc. 296, 56–65.CrossRefADSGoogle Scholar
  28. Ellsworth, K. and Schubert, G.: 1983, ‘Saturn's Icy Satellites: Thermal and Structural Models’, Icarus 54, 490–510.CrossRefADSGoogle Scholar
  29. Fegley, Jr., B.: 1988, ‘Cosmochemical Trends of Volatile Elements in the Solar System’, in J. A. Nuth and P. Sylvester (eds.), Workshop on the Origins of Solar Systems, LPI Technical Report 88-04, Lunar and Planetary Institute, Houston, TX, pp. 51–60.Google Scholar
  30. Fei, Y. and Mao, H.-K.: 1993, ‘Static Compression of Mg(OH)2 to 78 Gpa at High Temperature and Constraints on the Equation of State of Fluid H2O’, J. Geophys. Res. 98, 11875–11884.ADSCrossRefGoogle Scholar
  31. Friedson, A. J. and Stevenson, D. J.: 1983, ‘Viscosity of Rock-Ice Mixtures and Applications to the Evolution of Icy Satellites’, Icarus 56, 1–14.CrossRefADSGoogle Scholar
  32. Giaque, W. F. and Stout J. W.: 1936, ‘The Entropy of Water and the Third Law of Thermodynamics. The Heat Capacity of Ice from 15 to 273 K’, J. Amer. Chem. Soc. 58, 1144–1150.CrossRefADSGoogle Scholar
  33. Ginnings, D. C. and Corruccini, R. J.: 1947, ‘An Improved Ice Calorimeter – The Determination of its Calibration Factor and the Density of Ice at 0 °C’, J. Res. Natl. Bur. Stand. 38, 583–591.Google Scholar
  34. Graner, F. and Dubralle, B.: 1994, ‘Titius–Bode Laws in the Solar System’, Astron. Astrophys. 282, 262–268.ADSGoogle Scholar
  35. Grevesse, N., Noels, A., and Sauval, A. J.: 1992, ‘Photospheric Abundances’, in Proceedings of the First SOHO Workshop, ESA SP-348, pp. 305–308.Google Scholar
  36. Grossman, L.: 1972, ‘Condensation in the Primitive Solar Nebula’, Geochim. Cosmochim. Acta 36, 597–619.CrossRefADSGoogle Scholar
  37. Hobbs, P. V.: 1974, Ice Physics, Oxford University Press, London.Google Scholar
  38. Hogenboom, D. L., Kargel, J. S., Consolmagno, G. J., Holden, T. C., Lee, L., and Buyyounouski, M.: 1997, ‘The Ammonia-Water System and the Chemical Differentiation of Icy Satellites', Icarus 128, 171–180.CrossRefADSGoogle Scholar
  39. Hourigan, K.: 1977, ‘Numerical Experiments on Planetesimal Aggregation during the Formation of the Solar System’, Proc. Astron. Soc. Aust. 3, 169–171.ADSGoogle Scholar
  40. Jeans, J. H.: 1928, Astronomy and Cosmogony, Cambridge University Press, Cambridge, 389 pp.MATHGoogle Scholar
  41. Kamb, B.: 1964, ‘Ice II: A Proton-Ordered Form of Ice’, Acta Cryst. 17, 1437–1449.CrossRefGoogle Scholar
  42. Kamb, B.: 1965, ‘Structure of Ice VI’, Science 150, 205–209.ADSGoogle Scholar
  43. Kargel, J. S.: 1992, ‘Ammonia-Water Volcanism on Icy Satellites: Phase Relations at 1 Atmosphere’, Icarus 100, 556–574.CrossRefADSGoogle Scholar
  44. Khurana, K. K., Kivelson, M. G., Russell, C. T., Walker, R. J., and Southwood, D. J.: 1997, ‘Absence of an Internal Magnetic Field of Callisto’, Nature 387, 262–264.CrossRefADSGoogle Scholar
  45. Khurana, K. K, Kivelson, M. G., Stevenson, D. J., Schubert, G., Russell, C. T., Walker, R. J., and Polanskey, C.: 1998, ‘Induced Magnetic Fields as Evidence for Subsurface Oceans in Europa and Callisto’, Nature 395, 777–780.CrossRefADSGoogle Scholar
  46. Kingery, W. D., Franck, J., Coble, R. L., and Vasilos, T.: 1954, ‘Thermal Conductivity: X, Data for Several Pure Oxide Materials Corrected to Zero Porosity’, J. Amer. Ceram. Soc. 37, 107–110.Google Scholar
  47. Kivelson, M. G., Khurana, K. K., Joy, S., Russell, C. T., Southwood, D. J., Walker, R. J., and Polanskey, C.: 1997, ‘Europa's Magnetic Signature: Report from Galileo's Pass on 19 December 1996’, Science 276, 1239–1241.CrossRefADSGoogle Scholar
  48. Kivelson, M. G., Khurana, K. K., Russell, C. T., Walker, R. J., Warnecke, J., Coroniti, F. V., Polanskey, C., Southwood, D. J., and Schubert, G.: 1996, ‘Discovery of Ganymede's Magnetic Field by the Galileo Spacecraft’, Nature 384, 537–541.CrossRefADSGoogle Scholar
  49. Klinger, J. and Neumaïer, K.: 1969, ‘Conductibilité thermique de la glace’, C.R. Acad. Sci. Paris 269, Series B, 945–948.Google Scholar
  50. Krupskii, I. N., Manzhely, V. G., and Koloskova, L. A.: 1968, ‘Thermal Conductivity of Solid Ammonia’, Physica Status Solidi 27, 263–268.Google Scholar
  51. Kusaba, K., Syona, Y., Kikegawa, T., and Shimomura, O.: 1997, ‘Structure of FeS under High Pressure’, J. Phys. Chem. Solids 58, 241–246.CrossRefADSGoogle Scholar
  52. Landholt-Bornstein, Numerical Data and Functional Relationships in Science and Technology, New Series: 1975 (K.-H. Hellwege ed. in chief), Crystal Structure Data of Inorganic Compounds, Springer-Verlag, Berlin, Group III, Vol. 7, Part B, pp. 5–7.Google Scholar
  53. Laplace, P. S. de: 1796, Exposition du Système du Monde, Courcier, Paris, pp. 387–397.Google Scholar
  54. Larimer, J. W.: 1967, ‘Chemical Fractionation in Meteorites – I. Condensation of the Elements’, Geochim. Cosmochim. Acta 31, 1215–1238.CrossRefADSGoogle Scholar
  55. Leadbetter, A. J.: 1965, ‘The Thermodynamic and Vibrational Properties of H2O Ice and D2O Ice’, Proc. Roy. Soc. (Lond.) A287, 403–425.ADSCrossRefGoogle Scholar
  56. Lewis, J. S.: 1971, ‘Satellites of the Outer Planets’, Science 172, 1127–1128.ADSGoogle Scholar
  57. Lewis, J. S.: 1972, ‘Metal/Silicate Fractionation in the Solar System’, Earth Planet. Sci. Lett. 15, 286–290.CrossRefADSGoogle Scholar
  58. Lewis, J. S. and Prinn, R. G.: 1980, ‘Kinetic Inhibition of CO and N2 Reduction in the Solar Nebula’, Astrophys. J. 238, 357–364.CrossRefADSGoogle Scholar
  59. Lunine, J. L. and Stevenson, D. J.: 1982, ‘Formation of the Galilean Satellites in a Gaseous Nebula’, Icarus 52, 14–39.CrossRefADSGoogle Scholar
  60. Lupo, M. J. and Lewis, J. S.: 1979, ‘Mass-Radius Relationships in Icy Satellites,’ Icarus 40, 157–170.CrossRefADSGoogle Scholar
  61. Malhotra, R.: 1991, ‘Tidal Origin of the Laplace Resonance and the Resurfacing of Ganymede’, Icarus 94, 399–412.CrossRefADSGoogle Scholar
  62. Malhotra, R.: 1997, ‘Galileo Raises New Questions about Ganymede’, Phys. World 10, 21–22.Google Scholar
  63. McKinnon, W. B.: 1997, ‘Mystery of Callisto: Is it Undifferentiated?’, Icarus 130, 540–543.CrossRefADSGoogle Scholar
  64. Mizuno, H.: 1980, ‘Formation of the Giant Planets’, Prog. Theor. Phys. 64, 544–557.CrossRefADSGoogle Scholar
  65. Mueller, S. and McKinnon, W. B.: 1988, ‘Three-Layered Models of Ganymede and Callisto: Compositions, Structures, and Aspects of Evolution’, Icarus 76, 437–464.CrossRefADSGoogle Scholar
  66. Niemann, H. B., Atreya, S. K., Carignan, G. R., Donahue, T. M, Haberman, J. A., Harpold, D. N., Hartle, R. E., Hunten, D. M., Kasprzak, W. T., Mahaffy, P. R., Owen, T. C., Spencer, N. W., and Way, S. H.: 1996, ‘The Galileo Probe Mass Spectrometer: Composition of Jupiter's Atmosphere’, Science 272, 846–849.ADSGoogle Scholar
  67. Niemann, H. B., Atreya, S. K., Carignan, G. R., Donahue, T. M., Haberman, J. A., Harpold, D. N., Hartle, R. E., Hunten, D. M., Kasprzak, W. T., Mahaffy, P. R., Owen, T. C., and Way, S. H.: 1998, ‘The Composition of the Jovian Atmosphere as Determined by the Galileo Probe Mass Spectrometer’, J. Geophys. Res. 103, 22,831–22,845.CrossRefADSGoogle Scholar
  68. Overstreet, R. and Giaque, W. F.: 1937, ‘Ammonia. The Heat Capacity and Vapour Pressure of Solid and Liquids’, Heat of Vaporization. The Entropy Values from and Spectroscopic Data, J. Amer. Chem. Soc. 59, 254–259.Google Scholar
  69. Peale, S. J., Cassen, P., and Reynolds, R. T.: 1979, ‘Melting of Io by Tidal Dissipation’, Science 203, 892–894.ADSGoogle Scholar
  70. Pollack, J. B. and Reynolds, R. T.: 1974, ‘Implications of Jupiter's Early Contraction History for the Composition of the Galilean Satellites’, Icarus 21, 248–253.CrossRefADSGoogle Scholar
  71. Prentice, A. J. R.: 1973, ‘On Turbulent Stress and the Structure of Young Convective Stars’, Astron. Astrophys. 27, 237–248.ADSGoogle Scholar
  72. Prentice, A. J. R.: 1978a, ‘Origin of the Solar System: Gravitational Contraction of the Turbulent Protosun and the Shedding of a Concentric System of Gaseous Laplacian Rings’, Moon Planets 19, 341–398.CrossRefADSGoogle Scholar
  73. Prentice, A. J. R.: 1978b, ‘Towards a Modern Laplacian Theory for the Formation of the Solar System’, in S. F. Dermott (ed.), The Origin of the Solar System, John Wiley, New York, pp. 111–161.Google Scholar
  74. Prentice, A. J. R.: 1980, ‘Accretion of Planetesimals within a Gaseous Ring’, Aust. J. Phys. 33, 623–637.ADSGoogle Scholar
  75. Prentice, A. J. R.: 1990, ‘Iron/silicate Fractionation and the Formation of the Inner Planets’, Meteoritics 25, 399–400.ADSGoogle Scholar
  76. Prentice, A. J. R.: 1991, ‘Chemical Fractionation in Gas Rings and the Formation of the Solar System’, Proc. Astron. Soc. Aust. 9, 321–323.ADSGoogle Scholar
  77. Prentice, A. J. R.: 1993, ‘The Origin and Composition of Pluto and Charon: Chemically Uniform Models’, Proc. Astron. Soc. Aust. 10, 189–195.ADSGoogle Scholar
  78. Prentice, A. J. R.: 1995, ‘Origin and Bulk Chemical Composition of the Terrestrial Planets’, Eos Trans. AGU 76, F332.Google Scholar
  79. Prentice, A. J. R.: 1996a, ‘Origin and Bulk Chemical Composition of the Galilean Satellites and the Primitive Atmosphere of Jupiter: A Pre-Galileo Analysis’, Earth Moon Planets 73, 237–258.CrossRefADSGoogle Scholar
  80. Prentice, A. J. R.: 1996b, ‘Internal Structure and Bulk Chemical Composition of Io: A Pre-Galileo Prediction’, Phys. Lett. A213, 253–258.ADSGoogle Scholar
  81. Prentice, A. J. R.: 1996c, ‘Origin, Thermophysical Structure and Magnetic Properties of the Icy Galilean Satellites’, Eos Trans. AGU 77, F172.Google Scholar
  82. Prentice, A. J. R.: 1999, ‘Origin and Bulk Chemical Composition of the Galilean Satellites of Jupiter and the Inner Planets’, in 30th Lunar Planet Science Conference, LPI Contribution No. 964, Houston, TX.Google Scholar
  83. Prentice, A. J. R. and Freeman, J. C.: 1999, ‘The Origin of Callisto and its Subsurface Electrolytic Ocean’, Eos Trans. AGU 80(46), F607.Google Scholar
  84. Prentice, A. J. R. and ter Haar, D.: 1979, ‘Origin of the Jovian Ring and the Galilean satellites’, Nature 280, 300–302.CrossRefADSGoogle Scholar
  85. Pringle, J. E.: 1981, ‘Accretion Disks in Astrophysics’, Annu. Rev. Astron. Astrophys. 19, 137–162.CrossRefADSGoogle Scholar
  86. Proctor, T. M.: 1966, ‘Low-Temperature Speed of Sound in Single-Crystal Ice’, J. Acoust. Soc. Amer. 39, 972–979.CrossRefADSGoogle Scholar
  87. Ransford, G. A., Finnerty, A. A., and Collerson, K. D.: 1981, ‘Europa's Petrological Thermal History’, Nature 289, 21–24.CrossRefADSGoogle Scholar
  88. Robie, R. A., Hemingway, B. S., and Fisher, J. P.: 1978, Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures, U.S. Geol. Surv. Bull. 1452, U.S. Gov. Printing Office, Washington.Google Scholar
  89. Ross, R. G. and Kargel, J. S.: 1988, ‘Thermal Conductivity of Solar System Ices, with Special Reference to Martian Polar Caps’ in B. Schmidt, C. de Bergh, and M. Festou (eds.), Solar System Ices, Kluwer Academic Publishers, Dordrecht, pp. 33–62.Google Scholar
  90. Ross, R. G., Anderson, P., and Bäckström, G.: 1977, ‘Thermal Conductivity of Nine Solid Phases of H2O’, High Temperatures-High Pressures 9, 87–96.Google Scholar
  91. Schatzman, E.: 1949, ‘On Certain Paths of Stellar Evolution. I. Preliminary Remarks’, Bull. Acad. Roy. Belgique 3, 1141–1152.Google Scholar
  92. Schubert, G., Cassen, P., and Young, R. E.: 1979, ‘Subsolidus Convective Cooling Histories of Terrestrial Planets’, Icarus 38, 192–211.CrossRefADSGoogle Scholar
  93. Schubert, G., Zhang, K., Kivelson, M. G., and Anderson, J. D.: 1996, ‘The Magnetic Field and Internal Structure of Ganymede’, Nature 384, 544–545.CrossRefADSGoogle Scholar
  94. Showman, A. P. and Ingersoll, A. P.: 1998, ‘Interpretation of Galileo Probe Data and Implications for Jupiter's Dry Downdrafts’, Icarus 132, 205–220.CrossRefADSGoogle Scholar
  95. Slack, G. A.: 1962, ‘Thermal Conductivity of MgO, Al2O3, MgAl2O4, and Fe3O4 crystals from 3 to 300 K’, Phys. Rev. 126, 427–441.CrossRefADSGoogle Scholar
  96. Standish, E. M.: 1990, ‘The Observational Basis for JPL's DE200, the Planetary Ephemerides of the Astronomical Almanac’, Astron. Astrophys. 233, 252–271.ADSGoogle Scholar
  97. Stewart, J. W.: 1960, ‘Compression and Phase Transitions of Solid NH3, SiF4, H2S and CF4’, J. Chem. Phys. 33, 128–133.CrossRefADSGoogle Scholar
  98. ter Haar, D.: 1949, ‘Stellar Rotation and Age’, Astrophys. J. 110, 321–328.CrossRefADSGoogle Scholar
  99. ter Haar, D.: 1967, ‘On the Origin of the Solar System’, Annu. Rev. Astron. Astrophys. 5, 267–278.CrossRefADSGoogle Scholar
  100. Thomas, P. C., Davies, M. E., Colvin, T. R., Oberst, J., Schuster, P., Neukum, G., Carr, M. H., McEwen, A. S., Schubert, G., Belton, M. J. S., and the Galileo Imaging Team: 1998, ‘The Shape of Io from Galileo Limb Measurements’, Icarus 135, 175–180.CrossRefADSGoogle Scholar
  101. Touloukian, Y. S. and Buyco, E. H.: 1970, Thermophysical Properties of Matter, Volume 5, Specific Heat: Nonmetallic Solids, IFI/Plenum, New York, Washington.Google Scholar
  102. Touloukian, Y. S., Powell, R. W., Ho, C. Y., and Klemens, P. G.: 1970a, Thermophysical Properties of Matter, Volume 2, Thermal Conductivity: Nonmetallic Solids, IFI/Plenum, New York, Washington.Google Scholar
  103. Touloukian, Y. S., Kirby, R. K., Taylor, R. E., and Lee, T. Y. R.: 1970b, Thermophysical Properties of Matter, Volume 13, Thermal Expansion: Nonmetallic Solids, IFI/Plenum, New York, Washington.Google Scholar
  104. Turcotte, D. L. and Schubert, G.: 1982, Geodynamics: Applications of Continuum Physics to Geological Problems, John Wiley, New York, 140 pp.Google Scholar
  105. von Zahn, U., Hunten, D. M., and Lehmacher, G.: 1998, ‘Helium in Jupiter's Atmosphere: Results from the Galileo Probe Helium Interferometer Experiment’, J. Geophys. Res. 103, 22,815–22,829.CrossRefADSGoogle Scholar
  106. Wasson, J. T.: 1985, Meteorites: Their Record of Early Solar-System History, W. H. Freeman, New York, 187 pp.Google Scholar
  107. Whalley, E.: 1969, ‘Structure Problems in Ice’, in N. Riehl, B. Bullemer, and H. Engelhardt (eds.), Physics of Ice, Plenum Press, New York, pp. 19–43.Google Scholar
  108. Whipple, F. L.: 1968, Earth, Moon, and Planets, 3rd edn., Harvard University Press, Cambridge, MA.Google Scholar
  109. Zhang, C. Z.: 2000, ‘A Study of Internal StructureModels and Dynamical Parameters of Ganymede’, Earth Moon Planets 84, 115–121.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • A. J. R. Prentice
    • 1
  1. 1.Department of Mathematics and StatisticsMonash University, Victoria 800, Australia and Jet Propulsion Laboratory, California Institute of TechnologyPasadenaU.S.A.

Personalised recommendations