Skip to main content
Log in

Lattice-Boltzmann Simulations of Particle-Fluid Suspensions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This paper reviews applications of the lattice-Boltzmann method to simulations of particle-fluid suspensions. We first summarize the available simulation methods for colloidal suspensions together with some of the important applications of these methods, and then describe results from lattice-gas and lattice-Boltzmann simulations in more detail. The remainder of the paper is an update of previously published work,(69, 70) taking into account recent research by ourselves and other groups. We describe a lattice-Boltzmann model that can take proper account of density fluctuations in the fluid, which may be important in describing the short-time dynamics of colloidal particles. We then derive macro-dynamical equations for a collision operator with separate shear and bulk viscosities, via the usual multi-time-scale expansion. A careful examination of the second-order equations shows that inclusion of an external force, such as a pressure gradient, requires terms that depend on the eigenvalues of the collision operator. Alternatively, the momentum density must be redefined to include a contribution from the external force. Next, we summarize recent innovations and give a few numerical examples to illustrate critical issues. Finally, we derive the equations for a lattice-Boltzmann model that includes transverse and longitudinal fluctuations in momentum. The model leads to a discrete version of the Green–Kubo relations for the shear and bulk viscosity, which agree with the viscosities obtained from the macro-dynamical analysis. We believe that inclusion of longitudinal fluctuations will improve the equipartition of energy in lattice-Boltzmann simulations of colloidal suspensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. K. Aidun and Y. N. Lu, Lattice Boltzmann simulation of solid particles suspended in fluid, J. Stat. Phys. 81:49-61 (1995).

    Google Scholar 

  2. C. K. Aidun, Y. N. Lu, and E. Ding, Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation, J. Fluid Mech. 373:287-311 (1998).

    Google Scholar 

  3. R. C. Ball and J. R. Melrose, A simulation technique for many spheres in quasi-static motion under frame-invariant pair drag and Brownian forces, Physica A 247:444-472 (1997).

    Google Scholar 

  4. C. W. J. Beenakker, The effective viscosity of a concentrated suspension (and its relation to diffusion), Physica A 128:48-81 (1984).

    Google Scholar 

  5. O. P. Behrend, Solid-fluid boundaries in particle suspension simulations via the lattice-Boltzmann method, Phys. Rev. E 52:1164 (1995).

    Google Scholar 

  6. R. Benzi, S. Succi, and M. Vergassola, The lattice-Boltzmann equation-Theory and applications, Phys. Rep. 222:145 (1992).

    Google Scholar 

  7. H. Binous and R. J. Phillips, The effect of sphere-wall interactions on particle motion in a viscoelastic suspension of FENE dumbbells, J. Non-Newton. Fluid Mech. 85:63-92 (1999).

    Google Scholar 

  8. G. A. Bird, Molecular Gas Dynamics (University Press, London, Oxford, 1976).

    Google Scholar 

  9. L. Bocquet, J. Piasecki, and J.-P. Hansen, On the Brownian motion of a massive sphere suspended in a hard sphere fluid. 1. Multiple-time-scale analysis and microscopic expression for the friction coefficient, J. Stat. Phys. 76:505-526 (1994).

    Google Scholar 

  10. G. Bossis and J. F. Brady, Self-diffusion of Brownian particles in concentrated suspensions under shear, J. Chem. Phys. 87:5437 (1987).

    Google Scholar 

  11. J. F. Brady, Rheology of concentrated colloidal dispersions, J. Chem. Phys. 99:567-581 (1993).

    Google Scholar 

  12. J. F. Brady and G. Bossis, Stokesian dynamics, Ann. Rev. Fluid. Mech. 20:111 (1988).

    Google Scholar 

  13. J. F. Brady and J. F. Morris, Microstructure of strongly sheared suspensions and its impact on rheology and diffusion, J. Fluid Mech. 348:103-139 (1997).

    Google Scholar 

  14. H. Brenner, The slow motion of a sphere through a viscous fluid towards a plane surface, Chem. Engng. Sci. 16:242-251 (1961).

    Google Scholar 

  15. M. P. Brenner, Screening mechanisms in sedimentation, Phys. Fluids 11:754-772 (1999).

    Google Scholar 

  16. R. E. Caflisch and J. H. C. Luke, Variance in the sedimentation speed of a suspension, Phys. Fluids 28:759 (1985).

    Google Scholar 

  17. A. A. Catherall, J. R. Melrose, and R. C. Ball, Shear thickening and order-disorder effects in concentrated colloids at high shear rates, J. Rheol. 44:1-25 (2000).

    Google Scholar 

  18. S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, Cambridge, 1960).

    Google Scholar 

  19. H. Chen, Volumetric formulation of the lattice-Boltzmann method for fluid dynamics: Basic Concept, Phys. Rev. E 58:3955-3963 (1998).

    Google Scholar 

  20. H. Chen, S. Chen, and W. H. Matthaeus, Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method, Phys. Rev. A 45:R5339-5342 (1992a).

    Google Scholar 

  21. H. D. Chen, C. Teixeira, and K. Molvig, Realization of fluid boundary conditions via discrete Boltzmann dynamics, Int. J. Mod. Phys. C 9:1281-1292 (1998).

    Google Scholar 

  22. S. Chen and G. D. Doolen, Lattice Boltzmann method for fluid flows, in Annual Review of Fluid Mechanics, J. L. Lumley, M. V. Dyke, and H. L. Reed, eds. (Palo Alto, California, 1998), pp. 329-364.

  23. S. Chen, Z. Wang, X. Shan, and G. D. Doolen, Lattice Boltzmann computational fluid dynamics in three dimensions, J. Stat. Phys 68:379 (1992b).

    Google Scholar 

  24. S. Y. Chen, D. Martinez, and R. W. Mei, On boundary conditions in lattice Boltzmann methods, Phys. Fluids 8:2527-2536 (1996).

    Google Scholar 

  25. B. Cichocki and R. B. Jones, Image representation of a spherical particle near a hard wall, Physica A 258:273-302 (1998).

    Google Scholar 

  26. I. L. Claeys and J. F. Brady, Suspensions of prolate spheroids in Stokes flow. 1. Dynamics of a finite number of particles in an unbounded fluid, J. Fluid Mech. 251:411-442 (1993).

    Google Scholar 

  27. R. Cornubert, D. d'Humières, and C. D. Levermore, A Knudsen layer theory for lattice gases, Physica D 47:241 (1991).

    Google Scholar 

  28. R. G. Cox, The motion of suspended particles almost in contact, Int. J. Multiphase Flow 1:343-371 (1974).

    Google Scholar 

  29. R. I. Cukier, R. Kapral, and J. R. Mehaffey, Kinetic theory of the hydrodynamic interaction between 2 particles, J. Chem. Phys. 74:2494-2504 (1981).

    Google Scholar 

  30. B. Dubrulle, U. Frisch, M. Hénon, and J.-P. Rivet, Low-viscosity lattice gases, Physica D 47:27-29 (1991).

    Google Scholar 

  31. L. Durlofsky, J. F. Brady, and G. Bossis, Dynamic simulation of hydrodynamically interacting particles, J. Fluid Mech. 180:21 (1987).

    Google Scholar 

  32. D. A. Edwards, M. Shapiro, P. Bar-Yoseph, and M. Shapira, The influence of Reynolds number upon the apparent permeability of spatially periodic arrays of cylinders, Phys. Fluids A 2:45 (1990).

    Google Scholar 

  33. D. L. Ermak and J. A. McCammon, Brownian dynamics with hydrodynamic interactions, J. Chem. Phys. 69:1352 (1978).

    Google Scholar 

  34. J. Feng, H. H. Hu, and D. D. Joseph, Direct simulation of initial-value problems for the motion of solid bodies in a Newtonian fluid. 1. Sedimentation, J. Fluid Mech. 261:95-134 (1994a).

    Google Scholar 

  35. J. Feng, H. H. Hu, and D. D. Joseph, Direct simulation of initial-value problems for the motion of solid bodies in a Newtonian fluid. 2. Couette and Poiseuille flows, J. Fluid Mech. 277:271-301 (1994b).

    Google Scholar 

  36. O. Filippova and D. Hänel, Grid-refinement for lattice-BGK models, J. Comput. Phys. 147:219 (1998).

    Google Scholar 

  37. A. L. Fogelson and C. S. Peskin, A fast numerical method for solving the three-dimensional Stokes equations in the presence of suspended particles, J. Comput. Phys. 79:50 (1988).

    Google Scholar 

  38. B. Fornberg, Steady incompressible flow past a row of circular cylinders, J. Fluid Mech. 225:625 (1991).

    Google Scholar 

  39. D. R. Foss and J. F. Brady, Structure, diffusion and rheology of Brownian suspensions by Stokesian dynamics simulation, J. Fluid Mech. 407:167-200 (2000).

    Google Scholar 

  40. S. Fraden and G. Maret, Multiple light scattering from concentrated, interacting suspensions, Phys. Rev. Lett. 65:512 (1990).

    Google Scholar 

  41. U. Frisch, D. d'Humières, B. Hasslacher, P. Lallemand, Y. Pomeau, and J.-P. Rivet, Lattice gas hydrodynamics in two and three dimensions, Complex Systems 1:649 (1987).

    Google Scholar 

  42. U. Frisch, B. Hasslacher, and Y. Pomeau, Lattice gas automata for the Navier-Stokes equation, Phys. Rev. Lett. 56:1505 (1986).

    Google Scholar 

  43. M. A. Gallivan, D. R. Noble, J. G. Georgiadis, and R. O. Buckius, An evaluation of the bounce-back boundary condition for lattice Boltzmann simulations, Int J. Numer. Meth. Fluids 25:249-263 (1997).

    Google Scholar 

  44. C. K. Ghadder, On the permeability of unidirectional fibrous media: A parallel computational approach, Phys. Fluids 7:2563 (1995).

    Google Scholar 

  45. I. Ginzbourg and P. M. Adler, Boundary condition analysis for the three-dimensional lattice-Boltzmann model, J. Phys. II France 4:191 (1994).

    Google Scholar 

  46. I. Ginzbourg and D. d'Humières, Local second-order boundary methods for lattice-Boltzmann models, J. Stat. Phys. 84:927 (1996).

    Google Scholar 

  47. R. Glowinski, T. W. Pan, T. I. Hesla, D. D. Joseph, and J. Periaux, A distributed Lagrange multiplier/fictitious domain method for the simulation of flow around moving rigid bodies, Comput. Method Appl Math Engng 184:241-267 (2000).

    Google Scholar 

  48. A. Greenbaum, Iterative methods for solving linear systems (Society for Industrial and Applied Mathematics, Philadelphia, 1997).

    Google Scholar 

  49. R. D. Groot and P. B. Warren, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation, J. Chem. Phys. 107:4423-4435 (1997).

    Google Scholar 

  50. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic Press, London, 1986).

    Google Scholar 

  51. J. Happel and H. Brenner, Low-Reynolds Number Hydrodynamics (Martinus Nijhoff, Dordrecht, 1986).

    Google Scholar 

  52. E. H. Hauge and A. Martin-Löf, Fluctuating hydrodynamics and Brownian motion, J. Stat. Phys. 7:259 (1973).

    Google Scholar 

  53. X. He and L.-S. Luo, Lattice-Boltzmann model for the incompressible Navier-Stokes equation, J. Stat. Phys. 88:927 (1997).

    Google Scholar 

  54. X. He, Q. Zou, L.-S. Luo, and M. Dembo, Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model, J. Stat. Phys. 87:115-136 (1997).

    Google Scholar 

  55. M. W. Heemels, M. H. J. Hagen, and C. P. Lowe, Simulating solid colloidal particles using the lattice-Boltzmann equation, J. Comput. Phys. 164:48-61 (2000).

    Google Scholar 

  56. F. Higuera, S. Succi, and R. Benzi, Lattice gas dynamics with enhanced collisions, Europhys. Lett. 9:345 (1989).

    Google Scholar 

  57. R. J. Hill, D. L. Koch, and A. J. C. Ladd, Inertial flows in ordered and random arrays of spheres, J. Fluid Mech, Submitted (1999).

  58. P. J. Hoogerbrugge and J. M. V. A. Koelman, Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics, Europhys. Lett. 19:155 (1992).

    Google Scholar 

  59. W. G. Hoover, T. G. Pierce, C. G. Hoover, J. O. Shugart, C. M. Stein, and A. L. Edwards, Molecular-dynamics, smoothed-particle applied mechanics, and irreversibility, Comput. Math. Appl. 28:155-174 (1994).

    Google Scholar 

  60. A. Jasberg, A. Koponen, M. Kataja, and J. Timonen, Hydrodynamical forces acting on particles in a two-dimensional flow near a solid wall, Comput. Phys. Comm. 129:196-206 (2000).

    Google Scholar 

  61. D. J. Jeffrey and Y. Onishi, Calculation of the resistance and mobility functions of two unequal rigid spheres in low-Reynolds-number flow, J. Fluid Mech. 139:261 (1984).

    Google Scholar 

  62. D. D. Joseph, Y. J. Liu, M. Poletto, and J. Feng, Aggregation and dispersion of spheres falling in viscoelastic liquids, J. Non-Newton Fluid Mech. 54:45-86 (1994).

    Google Scholar 

  63. D. L. Koch and A. J. C. Ladd, Moderate Reynolds number flows through periodic and random arrays of aligned cylinders, J. Fluid Mech. 349:31 (1997).

    Google Scholar 

  64. D. L. Koch and E. S. G. Shaqfeh, Screening in sedimenting suspensions, J. Fluid Mech. 224:275 (1991).

    Google Scholar 

  65. A. Koponen, Simulations of Fluid Flow in Porous Media by Lattice-Gas and Lattice-Boltzmann Methods, Ph.D. thesis, University of Jyväkylä, Finland (1998).

    Google Scholar 

  66. A. J. C. Ladd, Hydrodynamic interactions in a suspension of spherical particles, J. Chem. Phys. 88:5051 (1988).

    Google Scholar 

  67. A. J. C. Ladd, Hydrodynamic transport coefficients of random dispersions of hard spheres, J. Chem. Phys. 93:3484 (1990).

    Google Scholar 

  68. A. J. C. Ladd, Short-time motion of colloidal particles: Numerical simulation via a fluctuating lattice-Boltzmann equation, Phys. Rev. Lett. 70:1339 (1993).

    Google Scholar 

  69. A. J. C. Ladd, Numerical simulations of particulate suspensions via a discretized Boltzmann equation Part I. Theoretical foundation, J. Fluid Mech. 271:285 (1994a).

    Google Scholar 

  70. A. J. C. Ladd, Numerical simulations of particulate suspensions via a discretized Boltzmann equation Part II. Numerical results, J. Fluid Mech. 271:311 (1994b).

    Google Scholar 

  71. A. J. C. Ladd, Hydrodynamic screening in sedimenting suspensions of non-Brownian spheres, Phys. Rev. Lett. 76:1392 (1996).

    Google Scholar 

  72. A. J. C. Ladd, Sedimentation of homogeneous suspensions of non-Brownian spheres, Phys. Fluids 9:491-499 (1997).

    Google Scholar 

  73. A. J. C. Ladd, M. E. Colvin, and D. Frenkel, Application of lattice-gas cellular automata to the Brownian motion of solids in suspension, Phys. Rev. Lett. 60:975 (1988).

    Google Scholar 

  74. A. J. C. Ladd and D. Frenkel, Dynamics of colloidal dispersions via lattice-gas models of an incompressible fluid, in Cellular Automata and Modeling of Complex Physical Systems, P. Manneville, N. Boccara, G. Y. Vichniac, and R. Bidaux, eds. (Berlin-Heidelberg, 1989), pp. 242-245.

  75. A. J. C. Ladd and D. Frenkel, Dissipative hydrodynamic interactions via lattice-gas cellular automata, Physics of Fluids A 2:1921 (1990).

    Google Scholar 

  76. A. J. C. Ladd, Effects of container walls on the velocity fluctuations of sedimenting spheres, Unpublished work (2000).

  77. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Addison-Wesley, London, 1959).

    Google Scholar 

  78. L. D. Landau and E. M. Lifshitz, Statistical Physics (Addison-Wesley, Reading, Massachusetts, 1969).

    Google Scholar 

  79. C. E. Leith, Stochastic backscatter in a subgrid-scale model-Plane shear mixing layer, Phys. Fluids A 2:297-299 (1990).

    Google Scholar 

  80. A. Levine, S. Ramaswamy, E. Frey, and R. Bruinsma, Screened and unscreened phases in sedimenting suspensions, Phys. Rev. Lett. 81:5944 (1998).

    Google Scholar 

  81. M. Loewenberg and E. J. Hinch, Numerical simulation of a concentrated emulsion in shear flow, J. Fluid Mech. 321:395-419 (1996).

    Google Scholar 

  82. C. P. Lowe and D. Frenkel, Short-time dynamics of colloidal suspensions, Phys. Rev. E 54:2704-2713 (1996).

    Google Scholar 

  83. C. P. Lowe, D. Frenkel, and A. J. Masters, Long-time tails in angular momentum correlations, J. Chem. Phys. 103:1582-1587 (1995).

    Google Scholar 

  84. J. H. C. Luke, Decay of velocity fluctuations in a stably stratified suspension, Phys. Fluids. 12:1619-1621 (2000).

    Google Scholar 

  85. L.-S. Luo, Unified theory of lattice Boltzmann models for nonideal gases, Phys. Rev. Lett. 81:1618-1621 (1998).

    Google Scholar 

  86. A. Madja, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Dimensions (Springer-Verlag, New York, 1984).

    Google Scholar 

  87. R. S. Maier, R. S. Bernard, and D. W. Grunau, Boundary conditions for the lattice Boltzmann method, Phys. Fluids 8:1788-1801 (1996).

    Google Scholar 

  88. D. O. Martinez, W. H. Matthaes, S. Chen, and D. C. Montgomery, On boundary conditions in lattice Boltzmann methods, Phys. Fluids 6:1285-1298 (1994).

    Google Scholar 

  89. G. R. McNamara and B. J. Alder, Analysis of the lattice Boltzmann treatment of hydrodynamics, Physica A 194:218 (1993).

    Google Scholar 

  90. G. R. McNamara and G. Zanetti, Use of the Boltzmann equation to simulate lattice-gas automata, Phys. Rev. Lett. 61:2332 (1988).

    Google Scholar 

  91. R. W. Mei, L. S. Luo, and W. Shyy, An accurate curved boundary treatment in the lattice Boltzmann method, J. Comput. Phys. 155:307-330 (1999).

    Google Scholar 

  92. J. R. Melrose and R. C. Ball, The pathological behavior of sheared hard-spheres with hydrodynamic interactions, Europhys. Lett. 32:535-540 (1995).

    Google Scholar 

  93. J. J. Monaghan, Smoothed particle hydrodynamics, Annu. Rev. Astron. Astr. 30:543-574 (1992).

    Google Scholar 

  94. J. P. Morris, P. J. Fox, and Y. Zhu, Modeling Low Reynolds Number Incompressible Flow Using SPH, J. Comput. Phys. 136:214-226 (1997).

    Google Scholar 

  95. G. P. Muldowney and J. J. L. Higdon, A spectral boundary-element approach to 3-dimensional Stokes flow, J. Fluid Mech. 298:167-192 (1995).

    Google Scholar 

  96. N.-Q. Nguyen and A. J. C. Ladd, Lubrication forces in lattice-Boltzmann simulations, Unpublished work (2000).

  97. H. Nicolai and E. Guazzelli, Effect of the vessel size on the hydrodynamic diffusion of sedimenting spheres, Phys. Fluids 7:3 (1995).

    Google Scholar 

  98. D. R. Noble, S. Y. Chen, J. G. Georgiadis, and R. O. Buckius, A consistent hydrodynamic boundary-condition for the lattice Boltzmann method, Phys. Fluids 7:203-209 (1995).

    Google Scholar 

  99. S. A. Orszag and V. Yakhot, Reynolds-number scaling of cellular-automaton hydrodynamics, Phys. Rev. Lett. 56:1691-1693 (1986).

    Google Scholar 

  100. H. C. Öttinger, Stochastic Processes in Polymeric Fluids (Springer-Verlag, Berlin, 1996).

    Google Scholar 

  101. T. N. Phung, J. F. Brady, and G. Bossis, Stokesian dynamics simulation of Brownian suspensions, J. Fluid Mech. 313:181-207 (1996).

    Google Scholar 

  102. C. Pozrikidis, On the transient motion of ordered suspensions of liquid drops, J. Fluid Mech. 246:301-320 (1993).

    Google Scholar 

  103. D. W. Qi, Lattice Boltzmann simulations of particles in nonzero Reynolds number flows, J. Fluid Mech. 385:41-62 (1999).

    Google Scholar 

  104. Y. H. Qian, D. d'Humières, and P. Lallemand, Lattice BGK models for the Navier- Stokes equation, Europhys. Lett. 17:479-484 (1992).

    Google Scholar 

  105. S. R. Rastogi, N. J. Wagner, and S. R. Lustig, Rheology, self-diffusion, and microstructure of charged colloids under simple shear by massively parallel nonequlibrium Brownian dynamics, J. Chem. Phys. 104:9234-9248 (1996).

    Google Scholar 

  106. D. H. Rothman, Cellular-automaton fluids: a model for flow in porous media, Geophys. 53:509-518 (1988).

    Google Scholar 

  107. A. S. Sangani and A. Acrivos, Slow flow past periodic arrays of cylinders with application to heat transfer, Int. J. Multiphase Flow 8:193 (1982).

    Google Scholar 

  108. A. S. Sangani and G. B. Mo, An O(N) algorithm for Stokes and Laplace interactions of particles, Phys. Fluids 8:1990-2010 (1996).

    Google Scholar 

  109. P. N. Segré, O. P. Behrend, and P. N. Pusey, Short-time Brownian motion in colloidal suspensions-Experiment and simulation, Phys. Rev. E 52:5070-5083 (1995).

    Google Scholar 

  110. P. N. Segré, E. Herbolzheimer, and P. M. Chaikin, Long-range correlations in sedimentation, Phys. Rev. Lett. 79:2574 (1997).

    Google Scholar 

  111. A. Sierou and J. F. Brady, Accelerated Stokesian dynamics simulations, J. Fluid Mech. (2001)

  112. P. A. Skordos, Initial and boundary conditions for the lattice Boltzmann method, Phys. Rev. E 48:4823-4842 (1993).

    Google Scholar 

  113. J. A. Somers and P. C. Rem, in Shell Conference on Parallel Computing, G. A. van der Zee, ed. (1988).

  114. P. Tong and B. J. Ackerson, Analogies between colloidal sedimentation and turbulent convection at high Prandtl numbers, Phys. Rev. E 58:R6931-R6934 (1998).

    Google Scholar 

  115. S. O. Unverdi and G. Tryggvason, A front-tracking method for viscous, incompressible, multi-fluid flows, J. Comput. Phys. 100:25-37 (1992).

    Google Scholar 

  116. M. A. van der Hoef, D. Frenkel, and A. J. C. Ladd, Self-diffusion of colloidal particles in a two-dimensional suspension: are deviations from Fick's law experimentally observable?, Phys. Rev. Lett. 67:3459 (1991).

    Google Scholar 

  117. J. C. van der Werff and C. G. de Kruiff, Hard-sphere colloidal dispensions: the scaling of rheological properties with particle size, volume fraction, and shear rate, J. Rheol. 33:421 (1989).

    Google Scholar 

  118. J. C. van der Werff, C. G. de Kruiff, C. Blom, and J. Mellema, Linear viscoelastic behavior of dense hard-sphere dispersions, Phys. Rev. A 39:795-807 (1989).

    Google Scholar 

  119. R. Verberg, I. M. de Schepper, and E. G. D. Cohen, Viscosity of colloidal suspensions, Phys. Rev. E 55:3143-3158 (1997).

    Google Scholar 

  120. R. Verberg and A. J. C. Ladd, Simulation of low-Reynolds-number flow via a time-independent lattice-Boltzmann method, Phys. Rev. E 60:3366-3373 (1999).

    Google Scholar 

  121. R. Verberg and A. J. C. Ladd, Lattice-Boltzmann model with sub-grid scale boundary conditions, Phys. Rev. Lett 84:2148-2151 (2000a).

    Google Scholar 

  122. R. Verberg and A. J. C. Ladd, Simulations of erosion in narrow fractures, Water Resources Res., Submitted: Preprint at http://www.che.ufl.edu/ladd/publications/ wrr00.pdf (2000b).

  123. D. A. Weitz, D. J. Pine, P. N. Pusey, and R. J. A. Tough, Nondiffusive Brownian motion studied by Diffusing-Wave Spectroscopy, Phys. Rev. Lett. 63:1747 (1989).

    Google Scholar 

  124. Y. Zhu, P. J. Fox, and J. P. Morris, A Pore-Scale Numerical Model for Flow through Porous Media, Int. J. Numer. Anal. Methods Geomech. 23:881-904 (1999).

    Google Scholar 

  125. J. X. Zhu, D. J. Durian, J. Müller, D. A. Weitz, and D. J. Pine, Scaling of transient hydrodynamic interactions in concentrated suspensions, Phys. Rev. Lett. 68:2559 (1992).

    Google Scholar 

  126. D. P. Ziegler, Boundary conditions for lattice-Boltzmann simulations, J. Stat. Phys. 71:1171-1177 (1993).

    Google Scholar 

  127. A. Z. Zinchenko and R. H. Davis, An efficient algorithm for hydrodynamical interaction of many deformable drops, J. Comput. Phys. 157:539-587 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ladd, A.J.C., Verberg, R. Lattice-Boltzmann Simulations of Particle-Fluid Suspensions. Journal of Statistical Physics 104, 1191–1251 (2001). https://doi.org/10.1023/A:1010414013942

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010414013942

Navigation