Ukrainian Mathematical Journal

, Volume 53, Issue 1, pp 149–154 | Cite as

On Proximity of Correlation Functions of Homogeneous and Isotropic Random Fields Whose Spectral Functions Coincide on a Certain Set

  • D. V. Pavlov


We give examples of application of the mean-value theorem to finding various estimates of the proximity of correlation functions in the case where their spectral functions coincide on a certain set.


Correlation Function Random Field Spectral Function Isotropic Random Field Isotropic Random 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. M. Zolotarev, Contemporary Theory of Summation of Independent Random Variables [in Russian], Nauka, Moscow (1986).Google Scholar
  2. 2.
    M. I. Yadrenko, Spectral Theory of Random Fields [in Russian], Vyshcha Shkola, Kiev (1980).Google Scholar
  3. 3.
    G. N. Watson, A Treatise on the Theory of Bessel Functions Cambridge University Press, Cambridge (1944).Google Scholar
  4. 4.
    A. Ya. Dorogovtsev, Mathematical Analysis [in Russian], Vyshcha Shkola, Kiev (1985).Google Scholar
  5. 5.
    D. V. Pavlov, “Some relations for probability metrics for random fields,” Visn. Kiev Univ., Ser. Fiz.-Mat. Nauk Issue 2, 135–141 (1999).Google Scholar
  6. 6.
    A. Ya. Olenko, “On proximity of the spectral functions of homogeneous isotropic fields,” Theory Probab. Math. Stat. 46, 117–119 (1993).Google Scholar
  7. 7.
    A. Ya. Olenko, “On the properties of spectral and correlation functions,” in: Proc. of the 4th World Congr. Bernoulli Soc. Vienna (1996), pp. 363–364.Google Scholar
  8. 8.
    A. Ya. Olenko and D. V. Pavlov, “Some estimates for the proximity of correlation and spectral functions of random fields,” Nauk. Zap. Univ. “Kievo-Mogilyanskaya Akademiya”, Ser. Fiz.-Mat. Nauk 18, 17–19 (2000).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • D. V. Pavlov
    • 1
  1. 1.Kiev UniversityKiev

Personalised recommendations