Advertisement

Ukrainian Mathematical Journal

, Volume 53, Issue 2, pp 178–189 | Cite as

On the Manifolds of Eigenvectors of Linear and Quasilinear Finite-Dimensional Self-Adjoint Operators. I

  • Ya. M. Dymarskii
Article
  • 15 Downloads

Abstract

We investigate the vector bundle of the manifold of normalized eigenvectors of self-adjoint operators and its stratification with respect to the numbers and multiplicities of eigenvalues.

Keywords

Vector Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    I. V. Skrypnik, Methods for the Investigation of Nonlinear Elliptic Boundary-Value Problems [in Russian], Nauka, Moscow (1990).Google Scholar
  2. 2.
    L. A. Lyusternik, “On one boundary-value problem in the theory of nonlinear differential equations,” Dokl. Akad. Nauk SSSR, 33, 5–8 (1941).Google Scholar
  3. 3.
    Ya. M. Dymarskii, “Existence, oscillation properties, and asymptotics of normalized eigenfunctions of nonlinear boundary-value problems,” in: Qualitative and Approximate Methods for the Investigation of Operator Equations [in Russian], Yaroslavl (1985), pp. 133–139.Google Scholar
  4. 4.
    C. Cosner, “Bifurcations from higher eigenvalues,” Nonlin. Anal., 12, No. 3, 271–277 (1988).Google Scholar
  5. 5.
    Yu. G. Borisovich and O. V. Kunakovskaya, “Intersection theory methods,” in: Abstracts of the Conference on Stochastic and Global Analysis, Voronezh (1996), pp. 10–12.Google Scholar
  6. 6.
    I. M. Gel'fand, Lectures on Nonlinear Algebra [in Russian], Nauka, Moscow (1971).Google Scholar
  7. 7.
    Ya. M. Dymarskii, “On the Lyusternik theorem for a two-point problem of the second order,” in: Qualitative and Approximate Methods for the Investigation of Operator Equations [in Russian], Yaroslavl (1984), pp. 16–24.Google Scholar
  8. 8.
    Ya. M. Dymarskii, “On typical bifurcations in one class of operator equations,” Dokl. Ros. Akad. Nauk, 338, No. 4, 446–449 (1994).Google Scholar
  9. 9.
    Ya. M. Dymarskii, “On branches of small solutions of certain operator equations,” Ukr. Mat. Zh., 48, No. 7, 901–909 (1996).Google Scholar
  10. 10.
    Ya. M. Dymarskii, “On normalized eigenfunctions of one class of quasilinear elliptic equations,” Differents. Uravn., 34, No. 1, 127–129 (1998).Google Scholar
  11. 11.
    V. I. Arnol'd, Mathematical Methods of Classical Mechanics [in Russian], Nauka, Moscow (1974).Google Scholar
  12. 12.
    V. I. Arnol'd, “Remarks on the eigenvalues and eigenvectors of Hermitian matrices,” in: V. I. Arnol'd, Collected Works [in Russian], Fazis, Moscow (1998), pp. 583–604.Google Scholar
  13. 13.
    B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry [in Russian], Nauka, Moscow (1979).Google Scholar
  14. 14.
    A. T. Fomenko and D. B. Fuks, A Course of Homotopic Topology [in Russian], Nauka, Moscow (1989).Google Scholar
  15. 15.
    K. Uhlenbeck, “Generic properties of eigenfunctions,” Amer. J. Math., 98, No. 4, 1059–1078 (1976).Google Scholar
  16. 16.
    D. Husemoller, Fibre Bundles [Russian translation], Mir, Moscow (1970).Google Scholar
  17. 17.
    B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry. Methods of the Theory of Homologies [in Russian], Nauka, Moscow (1984).Google Scholar
  18. 18.
    V. A. Rokhlin and D. B. Fuks, Beginner's Course in Topology [in Russian], Nauka, Moscow (1977).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Ya. M. Dymarskii
    • 1
  1. 1.Lugansk Pedagogic UniversityLugansk

Personalised recommendations