Advertisement

Journal of Chemical Ecology

, Volume 27, Issue 7, pp 1525–1534 | Cite as

Association of Carbon Disulfide with Plants, in the Family Fabaceae

  • Jason Piluk
  • Peter G. Hartel
  • Bruce L. Haines
  • David E. Giannasi
Article

Abstract

We examined 40 taxa from nine genera within the subfamily Mimosoideae; 29 (73%) from six genera produced carbon disulfide (CS2). In addition, 19 of 40 taxa (48%) produced carbonyl sulfide (OCS). Of nine mimosoid taxa that produced CS2, all possessed a djenkolic acid and a cysteine lyase. Of three mimosoid taxa that did not produce CS2, two lacked a cysteine lyase and one lacked both a lyase and a djenkolic acid. Of 16 taxa from 14 genera from the other two subfamilies of the Fabaceae, the Caesalpinioideae and Papilionoideae, none produced CS2. The results suggest that CS2 production is common in the Mimosoideae and uncommon in the Caesalpinioideae and Papilionoideae and that plants in the Mimosoideae that do produce CS2 must possess both a djenkolic acid and a cysteine lyase for this production to occur.

Carbonyl sulfide cysteine lyase djenkolic acid organic sulfide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. AHMED, S., and EVANS, H. J. 1960. Cobalt: A micronutrient element for the growth of soybean plants under symbiotic conditions. Soil Sci. 90:205-210.Google Scholar
  2. ASHWORTH, J., BRIGGS, G. G., and EVANS, A. A. 1975. Field injection of carbon disulphide to inhibit nitrification of ammonia fertilizer. Chem. Ind. 6:749-750.Google Scholar
  3. BANWART, W. L., and BREMNER, J. M. 1975. Formation of volatile sulfur compounds by microbial decomposition of sulfur-containing amino acids in soils. Soil Biol. Biochem. 7:359-364.Google Scholar
  4. BIDLINGMEYER, B. A., COHEN, S. A., and TARVIN, T. L. 1984. Rapid analysis of amino acids using pre-column derivatization. J. Chromatogr. 336:93-104.Google Scholar
  5. BREMNER, J. M., and BUNDY, L.G. 1974. Inhibition of nitrification in soil by volatile sulfur compounds. Soil Biol. Biochem. 6:161-165.Google Scholar
  6. CAVALLINI, D., FREDERICI, G., DUPRÈ, S., CANNELLA, C., and SCANDURRA, R. 1980. Ambiguities in the enzymology of sulfur-containing compounds, pp. 510-523, in D. Cavallini, G. E. Gaull, and V. Zappia (eds.). Natural Sulfur Compounds. Plenum Press, New York.Google Scholar
  7. EVANS, C. S., SHAH, A. J., ADLARD, M. W., and LOURDES RICO ARCE, M. 1993. Nonprotein amino acids in seeds of neotropical species of Acacia. Phytochemistry 32:123-126.Google Scholar
  8. FENG, Z., and HARTEL, P. G. 1996. Factors affecting production of COS and CS2 in Leucaena and Mimosa species. Plant Soil 178:215-222.Google Scholar
  9. FENG, Z., HARTEL, P. G., RONCADORI, R.W., and SUNG, S. J. S. 1998. Inhibition of fungal colonization on the rhizoplane of the CS2-producing plant, Mimosa pudica L., pp. 115-126, in J. E. Box, Jr. (ed.). Root Demographics and their Efficiencies in Sustainable Agriculture, Grasslands, and Forest Ecosystems. Proceedings of the 5th Symposium of the International Society of Root Research. Kluwer Academic Publishers, Boston.Google Scholar
  10. FILIP, G. M., and ROTH, L. F. 1977. Stump injections with soil fumigants to eradicate Armillariella mellea from young-growth Ponderosa pine killed by root rot. Can. J. For. Res. 7:226-231.Google Scholar
  11. GMELIN, R. 1959. Die freien Aminosäuren der Samen von Acacia willardiana (Mimosaceae). Isolierung von Willardiin, einer neuen pflanzlichen Aminosäure, vermutlich L-Uracil-[?(? Amino-Propionsäure)]-(3). Hoppe-Seyler's Z. Physiol. Chem. 316:164-169.Google Scholar
  12. GMELIN, R. 1962. Dichrostachinsäure, eine neue schwefelhaltige Aminosäure aus den Samen von Dichrostachys glomerata (Forsk.) Hutch und Dalz. (Mimosaceae). Hoppe-Seyler's Z. Physiol. Chem. 327:186-194.Google Scholar
  13. GMELIN, V. R., HASENMAIER, G., and STRAUSS, G. 1957. Ñber das Vorkommen von Djenkosa¨ure und einer C-S Lyase in den Samen von Albizia lophantha Benth. (Mimosaseae). Z. Naturforsch. B: J. Chem. Sci. 12:687-697.Google Scholar
  14. GMELIN, V. R., KJAER, R. A., and LARSEN, P. O. 1962. N-acetyl-L-djenkolic acid, a novel amino acid isolated from Acacia farnesiana Willd. Phytochemistry 1:233-236.Google Scholar
  15. GUBA, E. F. 1932. Carbon disulfide emulsion for the control of the root-knot nematode. Massachusetts Agricultural Experimental Station, Bull. 292. Massachusetts State College, Amherst, Massachusetts.Google Scholar
  16. HAINES, B., BLACK, M., FAIL, J. Jr., MCHARGUE, L., and HOWELL, G. 1987. Potential sulphur gas emissions from a tropical rainforest and a Southern Appalachian deciduous forest, pp. 599-610, in T. C. Hutchinson and K. M. Meema (eds.). Effects of Atmospheric Pollutants on Forests, Wetlands and Agricultural Ecosystems. NATO ASI Series, Vol. G16. Springer-Verlag, Berlin.Google Scholar
  17. HAINES, B., BLACK, M., and BAYER, C. 1989. Sulfur emissions from roots of the rain forest tree Stryphnodendron excelsum. Ecosystem, community, and physiological implications, pp. 58-69, in E. S. Saltzman and W. J. Cooper (eds.). Biogenic Sulfur in the Environment. ACS Symposium Series No. 393. American Chemical Society, Washington, D.C.Google Scholar
  18. HARTEL, P. G., and HAINES, B. L. 1992. Effects of potential plant CS2 emissions on bacterial growth in the rhizosphere. Soil Biol. Biochem. 24:219-224.Google Scholar
  19. HARTEL, P. G., and REEDER, R. E. 1993. Effects of drought and root injury on plant-generated CS2 emissions in soil. Plant Soil 148:271-276.Google Scholar
  20. HARTEL, P. G., VAUGHN, T. M., and WILLIAMSON, J. W. 1993. Rhizosphere competitiveness of genetically altered Pseudomonas solanacearum in a novel gnotobiotic plant assembly. Soil Biol. Biochem. 25:1575-1581.Google Scholar
  21. HYMAN, M. R., KIM, C. Y., and ARP, D. J. 1990. Inhibition of ammonia monooxygenase in Nitrosomonas europaea by carbon disulfide. J. Bacteriol. 172:4775-4782.Google Scholar
  22. ITO, K., and FOWDEN, L. 1972. New characterization of amino acids and g-glutamyl peptides from Acacia georginae seed. Phytochemistry 11:2541-2545.Google Scholar
  23. KELLY, D. P., and SMITH, N. A. 1990. Organic sulfur compounds in the environment. Biogeochemistry, microbiology, and ecological aspects, pp. 345-385, in K. C. Marshall (ed.). Advances in Microbial Ecology, Vol. 11. Plenum Press, New York.Google Scholar
  24. KUSTER, W. C., and GOLDAN, P. D. 1987. Quantitation of the losses of gaseous sulfur compounds to enclosure walls. Environ. Sci. Technol. 21:810-815.Google Scholar
  25. LEWIS, J. A., and PAPAVIZAS, G. C. 1971. Effect of sulfur-containing volatile compounds and vapors from cabbage decomposition on Aphanomyces euteiches. Phytopathology 61:208-214.Google Scholar
  26. MAZELIS, M., and CREVELING, R. K. 1975. Purification and properties of S-alkyl-L-cysteine lyase from seedlings of Acacia farnesiana Willd. Biochem. J. 147:485-491.Google Scholar
  27. MAZELIS, M., and FOWDEN, L. 1973. Relationship of endogenous substrate to specificity of S-alkyl cysteine lyases of different species. Phytochemistry 12:1287-1289.Google Scholar
  28. McCLURE, P. R., and ISRAEL, D. W. 1979. Transport of nitrogen in xylem of soybean plants. Plant Physiol. 64:411-416.Google Scholar
  29. PEYTON, T., STEELE, R., and MABEY, W. 1978. Carbon disulfide, carbonyl sulfide: Literature reviewand environmental assessment. EPA 600/9-78-009. Environmental Protection Agency, Washington, D.C.Google Scholar
  30. PILUK, J., HARTEL, P. G., and HAINES,B. L. 1998. Production of carbon disulfide (CS2) from L-djenkolic acid in the roots of Mimosa pudica L. Plant Soil 200:27–32.Google Scholar
  31. PUNJ, G. K., and GIRISH, G. K. 1969. Relative toxicity of certain fumigants to Trogoderma granarium Everts (Coleoptera, Dermestidae). J. Stored Prod. Res. 4:339–342.Google Scholar
  32. RANDLE, W. M., LANCASTER, J. E., SHAW, M. L., SUTTON, K. H., HAY, R. L., and BUSSARD, M. L. 1995. Quantifying onion flavor compounds responding to sulfur fertility--sulfur increases levels of alk(en)yl cysteine sulfoxides and biosynthetic intermediates. J. Am. Soc. Hortic. Sci. 120:1075–1081.Google Scholar
  33. ROMEO, J. T. 1998. Functional multiplicity among nonprotein amino acids in mimosoid legumes: A case against redundancy. Ecoscience 5:287-294.Google Scholar
  34. SCHWIMMER, S., and KJAER, A. 1962. Purification and specificity of the C-S-lyase of Albizzia lophantha. Biochim. Biophys. Acta 42:316-324.Google Scholar
  35. SENEVIRATNE, A. S., and FOWDEN, L. 1968. The amino acids of the genus Acacia. Phytochemistry 7:1039-1045.Google Scholar
  36. VON KRAUSS, G. J., and REINBOTHE, H. 1970. Die Aminosäuren der Gattung Albizia Durazz. (Mimosaceae). Biochem. Physiol. Pflanzen 161:243-265.Google Scholar
  37. WESTBERG, H., and LAMB, B. 1984. Estimation of biogenic sulfur emissions from the Continental U.S., pp. 41-53, in V.P. Aneja (ed.). Environmental Impact of Natural Emissions. Transactions of the Air Pollution Control Association Specialty Conference (TR-2). Air Pollution Control Association, Pittsburgh, Pennsylvania.Google Scholar
  38. WHITFIELD, F. B., SHEA, S. R., GILLEN, K. J., and SHAW, K. J. 1981. Volatile components from the roots of Acacia pulchella R. Br. and their effect on Phytophthora cinnamomi Rands. Aust. J. Bot. 29:195-208.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Jason Piluk
    • 1
  • Peter G. Hartel
    • 1
  • Bruce L. Haines
    • 2
  • David E. Giannasi
    • 2
  1. 1.Department of Crop and Soil SciencesUniversity of GeorgiaAthens
  2. 2.Department of BotanyUniversity of GeorgiaAthens

Personalised recommendations