Skip to main content
Log in

From Two-Point Closures of Isotropic Turbulence to LES of Shear Flows

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

We first recall the EDQNM two-point closure approach of three-dimensional isotropic turbulence. It allows in particular prediction of the infrared kinetic-energy dynamics (with ak 4 backscatter) and the associated time-decay law of kinetic-energy, useful in particular for one-point closure modelling. Afterwards, we show how the spectral eddy viscosity concept may be used for large-eddy simulations: we introduce the plateau-peak model and the spectral-dynamic models. They are applied to decaying isotropic turbulence, and allow recovery of the EDQNM infrared energy dynamics. Anew infrared k 2 law for the pressure spectrum, predicted by the closure, is also well verified.

Assuming that subgrid scales are not too far from isotropy, the spectral-dynamic model is applied to the channel flow at h += 390, with statistics in very good agreement with DNS, while reducing considerably the computational time. We study with the aid of DNS and LES the case of the channel rotating about an axis of spanwise direction. The calculations allow to recover the universal linear behaviour of the mean velocity profile, with a local Rossby number equal to −1.

We present also LES (using the Grenoble Filtered Structure-Function Model), of a turbulent boundary layer passing over a cavity. Finally, we make some remarks on the future of LES for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Launder, B.E., Reece, G.J. and Rodi, W., Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech. 68 (1975) 537.

    Article  MATH  ADS  Google Scholar 

  2. André, J.C. and Lesieur, M., Influence of helicity on high Reynolds number isotropic turbulence. J. Fluid Mech. 81 (1977) 187-207.

    Article  MATH  ADS  Google Scholar 

  3. Métais, O. and Lesieur, M., Spectral large-eddy simulations of isotropic and stably-stratified turbulence. J. Fluid Mech. 239 (1992) 157-194.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Ha Minh, H., La modélisation statistique de la turbulence: Ses capacités et ses limitations. C.R. Acad. Sci., Sér. II-b 327 (1999) 343-358.

    MATH  Google Scholar 

  5. Rodi, W., Ferziger, J., Breuer, M. and Pourquié, M., Status of large eddy simulation: Result of a workshop. ASME Trans. 119 (1997) 248-262.

    Article  Google Scholar 

  6. Orszag, S.A., Statistical theory of turbulence. In: Balian, R. and Peube, J.L. (eds), Fluid Dynamics 1973, Les Houches Summer School of Theoretical Physics. Gordon and Breach (1977) pp. 237-374.

  7. Lesieur M., Turbulence in Fluids, 3rd edn. Kluwer Academic Publishers, Dordrecht (1997).

    MATH  Google Scholar 

  8. Lilly, D.K., The structure, energetics and propagation of rotating convective storms. Part II: Helicity and storm stabilization. J. Atmos. Sci. 43 (1986) 126-140.

    Article  ADS  Google Scholar 

  9. Borue, J. and Orszag, S.A., Spectra in helical three-dimensional homogeneous isotropic turbulence. Phys. Rev. E 55 (1997) 7005-7009.

    Article  MathSciNet  ADS  Google Scholar 

  10. Comte-Bellot, G. and Corrsin, S., The use of a contraction to improve the isotropy of a grid generated turbulence. J. Fluid Mech. 25 (1966) 657-682.

    Article  ADS  Google Scholar 

  11. Lesieur, M. and Schertzer, D., Amortissement auto similaire d'une turbulence à grand nombre de Reynolds. J. Mécanique 17 (1978) 609-646.

    MATH  MathSciNet  ADS  Google Scholar 

  12. Saffman, P.G., Note on decay of homogeneous turbulence. Phys. Fluids 10 (1967) 1349.

    Article  ADS  Google Scholar 

  13. Kolmogorov, A.N., On degeneration of isotropic turbulence in an incompressible viscous liquid. Dokl. Akad. Nauk. SSSR 31 (1941) 538-541.

    Google Scholar 

  14. Warhaft, Z. and Lumley, J.L., An experimental study of the decay of temperature fluctuations in grid generated turbulence. J. Fluid Mech. 88 (1978) 659-684.

    Article  ADS  Google Scholar 

  15. Lesieur, M., Ossia, S. and Métais, O., Infrared pressure spectra in 3D and 2D isotropic incompressible turbulence. Phys. Fluids 11(6) (1999) 1535-1543.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Aupoix, B., Private communication (1999).

  17. Chollet, J.P. and Lesieur, M., Parameterization of small scales of three-dimensional isotropic turbulence utilizing spectral closures. J. Atmos. Sci. 38 (1981) 2747-2757.

    Article  ADS  Google Scholar 

  18. Chollet, J.P. and Lesieur, M., Modélisation sous maille des flux de quantité de mouvement et de chaleur en turbulence tridimensionnelle. La Météorologie 29 (1982) 183-191.

    Google Scholar 

  19. Kraichnan, R.H., Eddy viscosity in two and three dimensions. J. Atmos. Sci. 33 (1976) 1521-1536.

    Article  ADS  Google Scholar 

  20. Larchevêque, M., Pressure fluctuations and Lagrangian accelerations in two-dimensional incompressible isotropic turbulence. European J. Mech. B. 9 (1990) 109-128.

    MATH  Google Scholar 

  21. Antonia, R.A., Teitel, M., Kim, J. and Browne, L.W.B., Low Reynolds number effects in a fully-developed turbulent channel flow. J. Fluid Mech. 236 (1992) 579-605.

    Article  ADS  Google Scholar 

  22. Lamballais, E., Métais, O. and Lesieur, M., Spectral dynamic model for large-eddy simulations of turbulent rotating channel flow. Theoret. Comp. Fluid Dynam. 12 (1998) 149-177.

    Article  MATH  ADS  Google Scholar 

  23. Piomelli, U., High Reynolds number calculations using the dynamic subgrid-scale stress model. Phys. Fluids A 5 (1993) 1484-1490.

    Article  ADS  Google Scholar 

  24. Métais, O., Flores, C., Yanase, S., Riley, J. and Lesieur, M., Rotating free shear flows. Part 2: Numerical simulations. J. Fluid Mech. 293 (1995) 41-80.

    Article  Google Scholar 

  25. Johnston, J.P., Halleen, R.M. and Lezius, D.K., Effects of spanwise rotation on the structure of two-dimensional fully developed turbulent channel flow. J. Fluid Mech. 56 (1972) 553-557.

    Article  ADS  Google Scholar 

  26. Yanase, S., Flores, C., Métais, O. and Riley, J., Rotating free-shear flows. I. Linear stability analysis. Phys. Fluids 5 (1993) 2725-2737.

    Article  MATH  ADS  Google Scholar 

  27. Lesieur, M. and Métais, O., New trends in large-eddy simulations of turbulence. Ann. Rev. Fluid Mech. 28 (1996) 45-82.

    Article  ADS  Google Scholar 

  28. Leslie, D.C. and Quarini, G.L., The application of turbulence theory to the formulation of subgrid-modelling procedures. J. Fluid Mech. 55 (1979) 65-91.

    Article  ADS  Google Scholar 

  29. Ducros, F., Comte, P. and Lesieur, M., Large-eddy simulation of transition to turbulence in a boundary-layer developing spatially over a flat plate. J. Fluid Mech. 326 (1996) 1-36.

    Article  MATH  ADS  Google Scholar 

  30. Pearson, B.R., Elavarasan, R. and Antonia, R.A., The Response of a turbulent boundary layer to a square groove. J. Fluids Engrg. 119 (1997) 466-469.

    Google Scholar 

  31. Perry, A. E., Schofield, W. H. and Joubert, P. N., Rough wall turbulent boundary layers. J. Fluid Mech. 177 (1969) 383-437.

    Article  ADS  Google Scholar 

  32. Tani, I., Turbulent boundary layer development over rough surfaces. In: Meier, H.U. and Bradshaw, P. (eds), Perspectives in Turbulent Studies. Springer-Verlag, Berlin (1987) pp. 223-249.

    Google Scholar 

  33. Choi, K.S. and Fujisawa, N., Possibility of drag reduction using d-type roughness. In: Krishna Prasad, K. (ed.), Further Developments in Turbulence Management. Kluwer Academic Publishers, Dordrecht (1993) pp. 315-324.

    Google Scholar 

  34. Djenidi, L., Elavarasan, R. and Antonia, R.A., The turbulent boundary layer over transverse square cavities. J. Fluid Mech. 395 (1999) 271-294.

    Article  MATH  ADS  Google Scholar 

  35. Spalart, P.R., Direct simulation of a turbulent boundary layer up to R θ = 1410. J. Fluid Mech. 187 (1988) 61-98.

    Article  MATH  ADS  Google Scholar 

  36. Lund, T.S., Wu X. and Squires, K.D., On the generation of turbulent inflow conditions for boundary layer simulations. In: Annual Research Briefs. Center for Turbulence Research (1996) pp. 287-295.

  37. Poinsot, T.J. and Lele, S.K., Boundary conditions for direct simulations of compressible viscous flows. J. Comp. Phys. 101 (1992) 104-129.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. Robinson, K.S., The kinematics of turbulent boundary layer structure. NASA Tech. Mem. 103859 (1991).

  39. Hunt, J.C.R., Wray, A.A. and Moin, P., Eddies, stream, and convergence zones in turbulent flows. CTR-88, Center for Turbulence Research, (1988) p. 193.

  40. Spalart, P.R. and Allmaras, S.R., A one-equation turbulence model for aerodynamic flows. AIAA Paper No. 92-0439 (1992).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lesieur, M., Comte, P., Dubief, Y. et al. From Two-Point Closures of Isotropic Turbulence to LES of Shear Flows. Flow, Turbulence and Combustion 63, 247–267 (2000). https://doi.org/10.1023/A:1009900723783

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009900723783

Navigation