Skip to main content
Log in

A Global Framework for Qualitative Shape Description

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

Qualitative models of spatial knowledge concern the description of both the shape of objects and their relative position in space. While there are contributions related to the latter aspect, small confidence is available for the former one. This paper aims to give a novel contribution in this direction. Qualitative models of shape should be seen as models able to represent commonsense knowledge of shape and not as a surrogate of quantitative models, which have a specific role in computer graphics and pattern recognition. Qualitative models are especially suitable for describing shapes in geographic space and build Geographical Information Systems that simulate the mental processes of human beings. The framework that we propose is structured in three dimensions (topological, projective, and metric properties of shape) that are shown to be necessary. Major emphasis is given to metric properties (elongation and symmetry) which have not received much attention till now.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • F. Attneave. 1954. Some informational aspects of visual perception. Psychological Reviews 61:183–193.

    Google Scholar 

  • H. Blum and R.N. Nagel. 1978. Shape description using weighted symmetric axis features. Pattern Recognition 10: 167–180.

    Google Scholar 

  • R. Bonola. 1955. Non-Euclidean geometry: A critical and historical study of its development. New York: Dover.

    Google Scholar 

  • M. Brady. 1983. Criteria for representations of shape. In A. Rosenfeld and J. Beck (Eds.), Human and Machine Vision. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • W. Bunge. 1962. Theoretical Geography. Lund, Sweden: C. W. K. Gleerup.

    Google Scholar 

  • E. Clementini and P. Di Felice. 1995. A comparison of methods for representing topological relationships. Information Sciences 3(3):149–178.

    Google Scholar 

  • E/ Clementini and P. Di Felice. 1996. An algebraic model for spatial objects with indeterminate boundaries. In P. A. Burrough and A. U. Frank (Eds.), Geographic Objects with Indeterminate Boundaries (pp. 155–169). GISDATA series, chapter 11. London: Taylor & Francis.

    Google Scholar 

  • E. Clementini and P. Di Felice. 1997. Topological invariants for lines. IEEE Transactions on Knowledge and Data Engineering (to appear).

  • A.G. Cohn. 1995a. The challenge of qualitative spatial reasoning. Computing Surveys 27(3): 323–327.

    Google Scholar 

  • A.G. Cohn. 1995b. A hierarchical representation of qualitative shape based on connection and convexity. In A. U. Frank and W. Kuhn (Eds.), Spatial Information Theory: A Theoretical Basis for GIS — International Conference, COSIT'95 (pp. 311–326). LNCS 988. Berlin: Springer-Verlag.

    Google Scholar 

  • M.J. Egenhofer, E. Clementini, and P. Di Felice. 1994. Topological relations between regions with holes. International Journal of Geographical Information Systems 8(2):129–142.

    Google Scholar 

  • M.J. Egenhofer and R.D. Franzosa. 1995. On the equivalence of topological relations. International Journal of Geographical Information Systems 9(2): 133–152, 1995.

    Google Scholar 

  • M.J. Egenhofer and D.M. Mark. 1995. Naive geography. In A. U. Frank and W. Kuhn (Eds.), Spatial Information Theory: A Theoretical Basis for GIS — International Conference, COSIT'95 (pp. 1–15). LNCS 988. Berlin: Springer-Verlag.

    Google Scholar 

  • A.U. Frank. 1996. Qualitative spatial reasoning: cardinal directions as an example. International Journal of Geographical Information Systems 10(3): 269–290.

    Google Scholar 

  • G.D. Garson and R.S. Biggs. 1992. Analytic mapping and geographic databases. Newbury Park, CA: Sage Public.

    Google Scholar 

  • M.J. Greenberg. 1973. Euclidean and Non-Euclidean Geometries. San Francisco: W. H. Freeman and Company.

    Google Scholar 

  • H.J.A.M. Heijmans. 1994. Morphological Image Operators. Advances in electronics and electron physics. San Diego: Academic Press.

    Google Scholar 

  • D. Hernández. 1994 Qualitative Representation of Spatial Knowledge. LNCS 804. Berlin: Springer-Verlag.

    Google Scholar 

  • D. Hernández, E. Clementini, and P. Di Felice. 1995. Qualitative distances. In A. U. Frank and W. Kuhn (Eds.), Spatial Information Theory: A Theoretical Basis for GIS — International Conference, COSIT'95 (pp. 45–57). LNCS 988. Berlin: Springer-Verlag.

    Google Scholar 

  • J.R. Hobbs 1985. Granularity. In A. Joshi (Ed.), Proceedings of the Ninth International Joint Conference on Artificial Intelligence, Los Angeles, CA, 432–435.

  • F. Klein. 1893. Verglecheinde Betrachtungen über neuere geometrischen Forschungen. Bulletin of the New York Mathematical Society 2: 215–249.

    Google Scholar 

  • D. Lee and T. Sallee. 1970. A method of measuring shape. Geographical Review 60: 555–563.

    Google Scholar 

  • M. Leyton. 1988. A process-grammar for shape. Artificial Intelligence 34: 213–247.

    Google Scholar 

  • M. Lundell and L. De Floriani. 1996 Shape representation. In A. G. Cohn (Ed.), Qualitative Spatial Reasoning. SPACENET book (in preparation).

  • M.L. Mavrovouniotis and G. Stephanopoulos. 1988. Formal order-of-magnitude reasoning in process engineering. Computer Chemical Engineering 12: 867–880.

    Google Scholar 

  • T. Pavlidis. 1978. A review of algorithms for shape analysis. Computer Graphics and Image Processing 7: 243–258.

    Google Scholar 

  • J. Piaget and B. Inhelder. 1947. La représentation de l'espace chez l'enfant. Paris: Presses Universitaires de France.

    Google Scholar 

  • J. Piaget, B. Inhelder, and A. Szeminska. 1948. La géométrie spontanée de l'enfant. Paris: Presses Universitaires de France.

    Google Scholar 

  • W. Richards and D. Hoffman. 1985. Codon constraints on closed 2D shapes. Computer Vision, Graphics, and Image Processing 31: 265–281.

    Google Scholar 

  • C. Schlieder. 1996. Qualitative shape representation. In P. A. Burrough and A. U. Frank (Eds.), Geographic Objects with Indeterminate Boundaries (pp. 123–140). GISDATA series, chapter 9. London: Taylor & Francis.

    Google Scholar 

  • K. Selkirk. 1982. Pattern and place: An introduction to the mathematics of geography. New York: Cambridge University Press.

    Google Scholar 

  • R. Torretti 1978. Philosophy of Geometry from Riemann to Poincaré. Dordrecht: D. Reidel Pub. C.

    Google Scholar 

  • R. J. Trudeau. 1987. The Non-Euclidean Revolution. Boston: Birkhäuser.

    Google Scholar 

  • H. Weyl. 1952. Symmetry. Princeton University Press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

CLEMENTINI, E., DI FELICE, P. A Global Framework for Qualitative Shape Description. GeoInformatica 1, 11–27 (1997). https://doi.org/10.1023/A:1009790715467

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009790715467

Navigation