Advertisement

Positivity

, Volume 3, Issue 1, pp 95–100 | Cite as

A Short Solution to the Busemann-Petty Problem

  • F. Barthe
  • M. Fradelizi
  • B. Maurey
Article

Abstract

A unified analytic solution to the Busemann-Petty problem was recently found by Gardner, Koldobsky and Schlumprecht. We give an elementary proof of their formulas for the inverse Radon transform of the radial function \(\rho _K\) of an origin-symmetric star body \(K\).

convex body star body Busemann-Petty problem Radon transform 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ball, K.: Some remarks on the geometry of convex sets. In Geometric Aspects of Functional Analysis, number 1317 in LMN, pp. 224-231. Springer, 1998.Google Scholar
  2. 2.
    Bourgain, J.: On the Busemann-Petty problem for perturbations of the ball. Geom. Functional Anal. 1(1991), 1-13.Google Scholar
  3. 3.
    Gardner, R. J.: Intersection bodies and the Busemann-Petty problem. Trans. Amer. Math. Soc., 342 (1994), 435-445.Google Scholar
  4. 4.
    Gardner, R. J.: A positive answer to the Busemann-Petty problem in three dimensions. Annals of Math., 140 (1994), 435-447.Google Scholar
  5. 5.
    Giannopoulos, A.: A note on a problem of H. Busemann and C. M. Petty concerning sections of symmetric convex bobies. Mathematika, 37 (1990), 239-244.Google Scholar
  6. 6.
    Gardner, R. J., Koldobsky, A. and Schlumprecht, T.: An analytic solution to the Busemann-Petty problem on sections of convex bodies. To appear.Google Scholar
  7. 7.
    Koldobsky, A.: Intersection bodies and the Busemann-Petty problem. C. R. Acad. Sci. Paris, 325 (1997), 1181-1186.Google Scholar
  8. 8.
    Larman, D. G. and Rogers, C. A.: The existence of a centrally symmetric convex body with central sections that are unexpectedly small. Mathematika, 22 (1975), 164-175.Google Scholar
  9. 9.
    Lutwak, E.: Intersection bodies and dual mixed volumes. Advances in Math., 71 (1988), 232-261.Google Scholar
  10. 10.
    Papadimitrakis, M.: On the Busemann-Petty problem about convex, centrally symmetric bodies in Rn. Mathematika, 39 (1992), 258-266.Google Scholar
  11. 11.
    Zhang, G.: Centered bodies and dual mixed volumes. Trans. Amer. Soc., 345 (1994), 77-801.Google Scholar
  12. 12.
    Zhang, G.: A positive answer to the Busemann-Petty problem in four dimensions. To appear.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • F. Barthe
    • 1
  • M. Fradelizi
    • 1
  • B. Maurey
    • 1
  1. 1.Equipe d'Analyse et Mathématiques AppliquéesUniversité de Marne la ValléeFrance E-mail

Personalised recommendations