, Volume 3, Issue 1, pp 33–47 | Cite as

Limit Superior of Subdifferentials of Uniformly Convergent Functions

  • A. Jourani


In this paper we show that the \(G\) – subdifferential of a lower semicontinuous function is contained in the limit superior of the \(G\) – subdifferential of lower semicontinuous uniformly convergent family to this function. It happens that this result is equivalent to the corresponding normal cones formulas for family of sets which converges in the sense of the bounded Hausdorff distance. These results extend to the infinite dimensional case those of Ioffe for \(C^2\) – functions and of Benoist for Clarke’s normal cone. As an application we characterize the subdifferential of any function which is bounded from below by a negative quadratic form in terms of its Moreau–Yosida proximal approximation.

subdifferentials uniformly convergent functions Ekeland variational principle bounded Hausdorff distance Moreau-Yosida proximal approximation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aliprantis, C.D. and Burkinshaw, O.: 1985, Positive Operators, Academic Press, Inc., Orlando.Google Scholar
  2. 2.
    Amann, H.: 1976, 'Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces', SIAM Review 18, 620-709.Google Scholar
  3. 3.
    Bauschke, H.H., Borwein, J.M.: 1996, 'On projection algorithms for solving convex feasibility problems', SIAM Review 38, 367-426.Google Scholar
  4. 4.
    Bauschke, H.H., Borwein, J.M. and Lewis A.S.: 1997, 'The method of cyclic projections for closed convex sets in Hilbert space', Recent Developments in Optimization Theory and Nonlinear Analysis, Contempor. Math. 204, 1-38.Google Scholar
  5. 5.
    Censor, Y. and Reich, S.: 1996, 'Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimization', Optimization 37, 323-339.Google Scholar
  6. 6.
    Cohen, J.E.: 1979, 'Ergodic theorems in demography, Bull. Amer. Math. Soc. 1, 275-295.Google Scholar
  7. 7.
    De Blasi, F.S. and Myjak, J.: 1976, 'Sur la convergence des approximations successives pour les contractions nonlineaires dans un espace de Banach', C.R. Acad. Sc. Paris 283, 185-187.Google Scholar
  8. 8.
    De Blasi, F.S. and Myjak, J.: 1983, 'Generic flows generated by continuous vector fields in Banach spaces', Adv. in Math. 50, 266-280.Google Scholar
  9. 9.
    Dye, J., Kuczumow, T., Lin, P.K. and Reich, S.: 1996, 'Convergence of unrestricted products of nonexpansive mappings in spaces with the Opial property', Nonlinear Analysis: Theory, Methods and Applications 26, 767-773.Google Scholar
  10. 10.
    Dye, J. and Reich, S.: 1992, 'Random products of nonexpansive mappings, Optimization and Nonlinear Analysis, Pitman Research Notes in Mathematics Series 244, 106-118.Google Scholar
  11. 11.
    Fujimoto, T. and Krause, U.: 1988, 'Asymptotic properties for inhomogeneous iterations of nonlinear operators', SIAM J. Math. Anal. 19, 841-853.Google Scholar
  12. 12.
    Lin, P.K.: 1995, 'Unrestricted products of contractions in Banach spaces', Nonlinear Analysis: Theory, Methods and Applications 24, 1103-1108.Google Scholar
  13. 13.
    Myjak, J.: 1983, 'Orlicz type category theorems for functional and differential equations', Dissertationes Math. (Rozprawy Mat.) 206, 1-81.Google Scholar
  14. 14.
    Nussbaum, R.D.: 1990, 'Some nonlinear weak ergodic theorems', SIAM J. Math. Anal. 21, 436-460.Google Scholar
  15. 15.
    Reich, S. and Zaslavski, A.J.: 'Convergence of generic infinite products of nonexpansive and uniformly continuous operators', Nonlinear Analysis: Theory, Methods and Applications, accepted for publication.Google Scholar
  16. 16.
    Zaslavski, A.J.: 1995, 'Optimal programs on infinite horizon, 1 and 2, SIAMJournal on Control and Optimization 33, 1643-1686.Google Scholar
  17. 17.
    Zaslavski, A.J.: 1996, 'Dynamic properties of optimal solutions of variational problems', Nonlinear Analysis: Theory, Methods and Applications 27, 895-932.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • A. Jourani
    • 1
  1. 1.Laboratoire ‘‘Analyse Appliquée et Optimisation’’Université de BourgogneDijon CédexFrance E-mail

Personalised recommendations