, Volume 3, Issue 1, pp 83–93 | Cite as

Lp Contraction Semigroups for Vector Valued Functions

  • El Maati Ouhabaz


Let \(\tilde T_t\) be a contraction semigroup on the space of vector valued functions \(L^2 (X,m,K)\) (\(K\) is a Hilbert space). In order to study the extension of \(\tilde T_t\) to a contaction semigroup on \(L^p (X,m,K)\), \(1 \leqslant p{\text{ < }}\infty\) Shigekawa [Sh] studied recently the domination property \(|\tilde T_t u|_K \leqslant T_t |u|_K\) where \(T_t\) is a symmetric sub-Markovian semigroup on \(L^2 (X,m,\mathbb{R})\). He gives in the setting of square field operators sufficient conditions for the above inequality. The aim of the present paper is to show that the methods of [12] and [13] can be applied in the present setting and provide two ways for the extension of \({\tilde T}\) to \(L^p\) We give necessary and sufficient conditions in terms of sesquilinear forms for the \(L^\infty -\)contractivity property \(||\tilde T_t u||_{L^\infty } (X,m,K) \leqslant ||u||_{L^\infty } (X,m,K),\) as well as for the above domination property in a more general situation.

Positive and \(L^\infty\)-contractive semigroups domination sesquilinear forms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arendt, W. and Batty, C.: Absorption semigroups and Dirichlet boundary conditions, Math. Annal. 295(1993), 427-448.Google Scholar
  2. 2.
    Barthélemy, L.: Invariance d'un convex fermé par un semi-groupe associé à une forme nonlinéaire, Abst. Appl. Anal. 1 (3) (1996), 237-262.Google Scholar
  3. 3.
    Bérard, P. H.: Spectral Geometry: Direct and Inverse Problems, Lect. Notes in Math. 1207, Springer, 1986.Google Scholar
  4. 4.
    Cycon, H. L., Froese, R. G., Kirsch,W. and Simon, B.: Schrödinger operators, Springer-Verlag 1987.Google Scholar
  5. 5.
    Chavel, I.: Eigenvalues in Riemannian Geometry, Academic Press 1984.Google Scholar
  6. 6.
    Davies, E. B.: Heat Kernels and Spectral Theory, Cambridge Univ. Press 1989.Google Scholar
  7. 7.
    Hess, H., Schrader, R. and Uhlenbrock, D. A.: Domination of semigroups and generalization of Kato's inequality, Duke Math. J. 44 (1977), 893-904.Google Scholar
  8. 8.
    Fukushima, M., Oshima, Y. and Takeda, M.: Dirichlet Forms and Symmetric Markov Process, de Gruyter, Berlin 1994.Google Scholar
  9. 9.
    Kato, T.: Perturbation Theory for Linear Operators, Springer-Verlag Berlin 1966.Google Scholar
  10. 10.
    Ma, M. Z. and Röckner, M.: Introduction to (non-symmetric) Dirichlet Forms Springer 1992.Google Scholar
  11. 11.
    Nagel, R.: (ed.), One-parameter Semigroups of Positive Operators, Lect. Notes in Math. 1184, Springer-Verlag 1986.Google Scholar
  12. 12.
    Ouhabaz, E. M.: L ?-contractivity of semigroups generated by sectorial forms, J. London Math. Soc. 2 (46), (1992), 429-542.Google Scholar
  13. 13.
    Ouhabaz, E. M.: Invariance of closed convex sets and domination criteria for semigroups, Potential Analysis 5 (1996), 611-625.Google Scholar
  14. 14.
    Shigekawa, I.: L p contraction semigroups for vector valued functions, J. Funct. Analysis 147(1997), 69-108.Google Scholar
  15. 15.
    Simon, B.: Kato's inequality and the comparison of semigroups J. Funct. Analysis 32(1979), 97-101.Google Scholar
  16. 16.
    Strichartz, R. S.: Lp contractive projections and the heat semigroups for differential forms, J. Funct. Analysis 65 (1986), 348-357.Google Scholar
  17. 17.
    Voigt, J.: One-parameter semigroups acting simultaneously on different Lp_spaces, Bull. Soc. Roy. Sc. Liège 61 (1992), 465-470.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • El Maati Ouhabaz
    • 1
  1. 1.Equipe d'Analyse et de Mathématiques AppliquéesUniversité de Marne-La-ValléeMarne-la- Vallée Cedex 2France

Personalised recommendations