Neural Processing Letters

, Volume 5, Issue 3, pp 193–199

Self-Organizing Maps for the Analysis of Complex Movement Patterns

  • H.U. Bauer
  • W. Schöllhorn


We apply the Self-Organizing-Map-algorithm (SOM) as a central processing step in a new scheme for the characterisation of movement patterns of athletes. Due to its non-linear dimension reduction capabilities, the SOM outperforms a direct processing of the data as well as preprocessing using principal component analysis. Our results open the way to an objective assessment of movement patterns, with possible applications in the sport sciences as well as in medicine.

cluster analysis dimension-reduction movement pattern neighborhood preservation SOM 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • H.U. Bauer
    • 1
    • 2
  • W. Schöllhorn
    • 3
  1. 1.Max-Planck-Institut für StrömungsforschungGöttingenGermany
  2. 2.SFB 185 ‘Nichtllineare Dynamik’JWG-UniversitätFrankfurtGermany
  3. 3.Institut für BiomechanikJWG-UniversitätFrankfurtGermany

Personalised recommendations