Skip to main content
Log in

Characterization of Porous Carbonaceous Sorbents Using High Pressure CO2 Adsorption Data

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In this paper we present adsorption isotherms of carbon dioxide on five different activated carbons from CHEMVIRON CARBON Belgium (Centaur HSV, BPL 410, F30-470, WS 42, Reactivated) and on a carbon molecular sieve from BERGBAU FORSCHUNG Gmbh (CMS II). The temperature is 303 K and the pressure ranges from 100 kPa up to 4000 kPa. Such conditions correspond to relative pressures ranging from 0.01 to 0.5. We also provide, for the same six sorbents, the nitrogen isotherms at 77 K (pressure: 0.001 to 100 kPa, relative pressure: 10-5 to 1). A theoretical treatment based on the Dubinin-Radushkevich and Stoeckli concept is presented and applied to the experimental results in order to obtain the micropore size distribution function (considered as Gaussian) of each sorbent. Using the CO2 data, it is possible to point out important structural differences between the six carbons. The theoretical treatment provides micropore size distribution functions in agreement with what is physically expected. Using N2 data, the structural differences are not so well marked. As a consequence, the structural parameters provided by the theoretical treatment are not reliable: except for the total micropore volume, they fluctuate strongly when changing the relative pressure domain of the used data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.H. de Boer, B.G. Linsen, Th. Vanderplas, and G.J. Zondervan, J. Catal. 4, 649 (1965).

    Google Scholar 

  2. R.Sh. Mikhail, S. Brunauer, and E.E. Bodor, J. Colloid Interface Science 26, 45 (1968).

    Google Scholar 

  3. B. Rand and H. Marsh, J. Colloid Interface Science 40, 478 (1972).

    Google Scholar 

  4. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierroti, J. Rouquerol, and T. Siemienewska, Pure and Applied Chemistry 57, 603 (1985).

    Google Scholar 

  5. M. Polanyi, Trans. Faraday Soc. 28, 316 (1932).

    Google Scholar 

  6. M.M. Dubinin and L.V. Radushkevich, Proc. Acad. Sci. USSR. 55, 331 (1947).

    Google Scholar 

  7. M.M. Dubinin, G.M. Plavnik, and E.D. Zaverina, Carbon 2, 261 (1964).

    Google Scholar 

  8. M.M. Dubinin and G.M. Plavnik, Carbon 6, 183 (1968).

    Google Scholar 

  9. P.J.M. Carrot, R.A. Roberts, and K.S.W. Sing, Carbon 25, 59 (1987).

    Google Scholar 

  10. M. Jaroniec, R. Madey, J. Choma, B. Mc Enaney, and T.J. Mays, Carbon 27, 77 (1989).

    Google Scholar 

  11. F. Stoeckli, J. Colloid Interface Sci. 59, 184 (1977).

    Google Scholar 

  12. U. Huber, F. Stoeckli, and J.P. Houriet, J. Colloid Interface Sci. 67, 195 (1978).

    Google Scholar 

  13. M. Jaroniec and J. Piotrowska, Monatsh. Chem. 117, 7 (1986).

    Google Scholar 

  14. M. Jaroniec and J. Choma, Carbon 26, 747 (1988).

    Google Scholar 

  15. M.M. Dubinin, Carbon 23, 373 (1985).

    Google Scholar 

  16. F. Stoeckli, Carbon 19, 325 (1981).

    Google Scholar 

  17. W. Rudzinski and D.H. Everett, Adsorption of Gases on Heterogeneous Surfaces, chap. 4 (Academic Press, London, 1992).

    Google Scholar 

  18. M.M. Dubinin, Progress in Surface Membrane Science, edited by D.A. Cadenhead et al. (Academic Press, New York, 1975).

    Google Scholar 

  19. G. Horvath and K. Kawazoe, J. Chem. Eng. Jap. 16, 470 (1983).

    Google Scholar 

  20. L.S. Cheng and R.T. Yang, Chem. Eng. Sci. 49, 2599 (1994).

    Google Scholar 

  21. A. Muller, Proc. Roy. Soc. A154, 624 (1936).

    Google Scholar 

  22. M. Kruk, M. Jaroniec, and J. Choma, Adsorption 3, 209 (1997).

    Google Scholar 

  23. C. Lastoskie, K.E. Gubbins, and N. Quirke, in Characterization of Porous Solids III, edited by J. Rouquerol, F. Rodriguez-Reinoso, K.S.W. Sing, and K.K. Unger (Elsevier, Amsterdam, 1994), p. 51.

    Google Scholar 

  24. J.P. Olivier, Journal of Porous Materials 2, 9 (1985).

    Google Scholar 

  25. C. Lastoskie, K.E. Gubbins, and N. Quirke, J. Phys. Chem. 97, 4786 (1993).

    Google Scholar 

  26. C. Lastoskie, K.E. Gubbins, and N. Quirke, Langmiur 9, 3693 (1993).

    Google Scholar 

  27. J.P. Olivier, W.B. Conklin, and M.v Szombathely, Stud. Surf. Sci. Catal. 87, 81 (1994).

    Google Scholar 

  28. M. Szombathely, M. Brauer, and M. Jaroniec, J. Comput. Chem. 13, 17 (1992).

    Google Scholar 

  29. Y. Bereznitski and M. Jaroniec, Adsorption 3, 277 (1997).

    Google Scholar 

  30. K. Berlier, J. Bougard, and M-G Olivier, Meas. Sci. Tecnol. 6, 107 (1995).

    Google Scholar 

  31. K. Berlier and M. Frère, Journal of Chemical and Engineering data 42, 533 (1997).

    Google Scholar 

  32. J.D. Moyer, T.R. Gaffney, J.N. Armor, and C.G. Coe, Microporous Materials 2, 229 (1994).

    Google Scholar 

  33. P.J.M. Carott and K.S.W. Sing, in Characterization of Porous Solids II, edited by F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, and K.K. Unger (Elsevier, Amsterdam, 1988), p. 77.

    Google Scholar 

  34. N.D. Hutson and R.T. Yang, Adsorption 3, 189 (1997).

    Google Scholar 

  35. J.M. Prausnitz, R.N. Lichtenthaler, and E. Gomes de Azevedo, Molecular Thermodynamics of Fluid-Phase Equilibria (Prentice-Hall Inc., Englewood Cliffs, 1986), p. 158.

    Google Scholar 

  36. R. Jadot, Int. J. Refrig. 4, 61 (1981).

    Google Scholar 

  37. A. Dhima and S. Jullian, in proceedings of the 1996 AIChE Meeting (1996).

  38. J.M. Prausnitz, C.A. Eckert, R.V. Orye, and J.P. O'Connell, Computer Calcualtions for Multicomponent Liquid-Vapor Equilibria (Prentice Hall Inc., Engelwood Cliffs, 1967), p. 29.

    Google Scholar 

  39. M.M. Dubinin and F. Stoeckli, J. Colloid Interface Sci. 75, 34 (1980).

    Google Scholar 

  40. B. Mac Enaney, Carbon 25, 69 (1987).

    Google Scholar 

  41. R.B. Stewart, R.T. Jacobsen, and S.G. Penoncello, Thermodynamic Properties of Refrigerants (ASHRAE Inc., Atlanta, 1986).

    Google Scholar 

  42. G.O. Wood, Carbon 30, 593 (1991).

    Google Scholar 

  43. T. Siemieniewska, K. Tomkow, J. Kaczmarczyk, A. Albiniak, Y. Grillet, and M. François, in Characterization of Porous Solids II, edited by F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, and K.K. Hunger (Elsevier, Amsterdam, 1988), p. 357.

    Google Scholar 

  44. K. Berlier and M. Frère, J. of Chem. & Eng. Data 41, 1144 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frère, M., De Weireld, G. & Jadot, R. Characterization of Porous Carbonaceous Sorbents Using High Pressure CO2 Adsorption Data. Journal of Porous Materials 5, 275–287 (1998). https://doi.org/10.1023/A:1009638406224

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009638406224

Navigation