Skip to main content
Log in

Cyclooxygenase-independent induction of p21WAF-1/cip1, apoptosis and differentiation by L-745,337, a selective PGH synthase-2 inhibitor, and salicylate in HT-29 cells

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

In order to dissect out cyclooxygenase-dependent from cyclooxygenase-independent mechanisms in the antiproliferative effects of selective prostaglandin H synthase (PGHS)-2 inhibitors, we compared the effects of L-745,337 (a highly selective PGHS-2 inhibitor) with sodium salicylate (a weak PGHS inhibitor) on prostanoid production, induction of the cyclin-dependent kinase inhibitor p21WAF-1/cip1, mutant p53 (m273-p53) levels, apoptosis and differentiation in human colon adenocarcinoma HT-29 cells. L-745,337 dose-dependently suppressed the cyclooxygenase activity of HT-29 cells (IC50: 0.24 μM). Four-day treatment with L-745,337 caused a concentration-dependent inhibition of cell growth (IC50: 0.9 mM) associated with the induction of p21WAF-1/cip1 and an increase in the proportion of apoptotic nuclei (EC50: 0.1 and 0.34 mM, respectively) while reducing the levels of m273-p53 (IC50: 0.2 mM). Sodium salicylate, at the concentration of 10 mM that did not affect prostanoid formation, caused a 60% reduction of cell growth associated with a 3-fold induction of p21WAF-1/cip1 and a 60% increase in the proportion of apoptotic nuclei. Ultrastructural analysis showed that L-745,337 (0.5 mM) and sodium salicylate (10 mM) caused the induction of a differentiated phenotype. We conclude that high concentrations of L-745,337 and sodium salicylate inhibit colon cancer cell growth by a mechanism unrelated to cyclooxygenase inhibition that may involve p53-independent induction of the tumor suppressor p21WAF-1/cip1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thun MJ. Aspirin, NSAIDs, and digestive tract cancers. Cancer Metastasis Rev 1994; 13: 269-277.

    Google Scholar 

  2. Levy GN. Prostaglandin H synthases, nonsteroidal anti-inflammatory drugs, and colon cancer. FASEB J 1997; 11: 234-247.

    Google Scholar 

  3. Giardiello FM, Stanley RH, Krush AJ, et al. Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis. N Engl J Med 1993; 328: 1313-1316.

    Google Scholar 

  4. Vane JR. Inhibition of prostaglandins as a mechanism of action for aspirin-like drugs. Nature New Biol 1971; 231: 232-235.

    Google Scholar 

  5. Rigas B, Goldman IS, Levine L. Altered eicosanoids levels in human colon cancer. J Lab Clin Med 1993; 122: 518-523.

    Google Scholar 

  6. Qiao L, Kozoni V, Tsioulias GJ, et al. Selected eicosanoids increase the proliferation rate of human colon carcinoma cell lines and mouse colonocytes in vivo. Biochim Biophis Acta 1995; 1258: 215-223.

    Google Scholar 

  7. Smith WL, Garavito R, DeWitt DL. Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and-2. J Biol Chem 1996; 271: 33157-33160.

    Google Scholar 

  8. Sano H, Kawahito Y, Wilder RL, et al. Expression of cyclooxygenase-1 and-2 in human colorectal cancer. Cancer Res 1995; 55: 3785-3789.

    Google Scholar 

  9. DuBois RN, Award J, Morrow J, Roberts LJ, Bishop PR. Regulation of eicosanoid production and mitogenesis in rat intestinal epithelial cells by transforming growth factor-α and phorbol ester. J Clin Invest 1994; 93: 493-498.

    Google Scholar 

  10. Kargman SL, O'Neill GP, Vickers PJ, Evans JF, Mancini JA, Jothy S. Expression of prostaglandin G/H synthase-1 and-2 protein in human colon cancer. Cancer Res 1995; 55: 2556-2559.

    Google Scholar 

  11. Kutchera W, Jones DA, Matsunami N, et al. Prostaglandin H synthase 2 is expressed in human colon cancer: evidence for a transcriptional effect. Proc Natl Acad Sci USA 1996; 93: 4816-4820.

    Google Scholar 

  12. Oshima M, Dinchuk JE, Kargman SL, et al. Suppression of intestinal polyposis in APCΔ716 knockout mice by inhibition of cyclooxygenase 2 (PGHS-2). Cell 1996; 87: 803-809.

    Google Scholar 

  13. Reddy BS, Rao CV, Seibert K. Evaluation of cyclooxygenase-2 inhibitor for potential chemopreventive properties in colon carcinogenesis. Cancer Res 1996; 56: 4566-4569.

    Google Scholar 

  14. Sheng H, Shao J, Kirkland SC, et al. Inhibition of human colon cancer cell growth by selective inhibition of cyclooxygenase-2. J Clin Invest 1997; 99: 2254-2259.

    Google Scholar 

  15. Shiff SJ, Koutsos MI, Qiao L, Rigas B. Nonsteroidal antiinflammatory drugs inhibit the proliferation of colon adenocarcinoma cells: effects on cell cycle and apoptosis. Exp Cell Res 1996; 222: 179-188.

    Google Scholar 

  16. Goldberg Y, Nassif I, Pittas A, et al. The anti-proliferative effect of sulindac and sulindac sulfide on HT-29 colon cancer cells: alteration in tumor suppressor and cell cycle-regulatory proteins. Oncogene 1996; 12: 893-901.

    Google Scholar 

  17. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 1993; 75: 805-816.

    Google Scholar 

  18. Schwaller J, Koeffler HP, Niklaus G, et al. Posttranscriptional stabilization underlies p53-independent induction of p21WAF-1/CIP/SDI1 in differentiating human leukemic cells. J Clin Invest 1995; 95: 973-979.

    Google Scholar 

  19. Panara MR, Greco A, Santini G, et al. Effects of the novel anti-inflammatory compounds, N-[2-(cyclohexyloxy)-4-nitrophenyl] methanesulphonamide (NS-398) and 5-methanesulphonamido-6-(2,4-difluorothiophenyl)-1-indanone (L-745, 337), on the cyclo-oxygenase activity of human blood prostaglandin endoperoxide synthases. Br J Pharmacol 1995; 116: 2429-2434.

    Google Scholar 

  20. Chan C-C, Boyce S, Brideau C, et al. Pharmacology of a selective cyclooxygenase-2 inhibitor, L-745,337: a novel nonsteroidal antiinflammatory agent with an ulcerogenic sparing effect in rat and nonhuman primate stomach. J Pharmacol Exp Ther 1995; 274: 1531-1537.

    Google Scholar 

  21. Mitchell JA, Akarasereenont P, Thiemermann C, Flower RJ, Vane JR. Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. Proc Natl Acad Sci USA 1994; 90: 11693-11697.

    Google Scholar 

  22. Laneuville O, Breuer DK, DeWitt DL, Hla T, Funk CD, Smith WL. Differential inhibition of human prostaglandin endoperoxide H synthases-1 and-2 by nonsteroidal anti-inflammatory drugs. J Pharmacol Exp Ther 1994; 271: 927-934.

    Google Scholar 

  23. Ciabattoni G, Pugliese F, Spaldi M, Cinotti GA, Patrono C. Radioimmunoassay measurement of prostaglandins E2 and F2α in human urine. J Endocrinol Invest 1979; 2: 173-182.

    Google Scholar 

  24. Patrignani P, Filabozzi P, Patrono C. Selective cumulative inhibition of platelet thromboxane production by low-dose aspirin in healthy subjects. J Clin Invest 1982; 69: 1366-1372.

    Google Scholar 

  25. Ullrich A, Shine J, Chirgwin J, et al. Rat insulin genes: construction of plasmids containing the coding sequences. Science 1977; 196: 1313-1319.

    Google Scholar 

  26. Hoff T, DeWitt D, Kaever V, Resch K, Goppelt-Struebe, M. Differentiation-associated expression of prostaglandin G/H synthase in monocytic cells. FEBS Lett 1993; 320: 38-42.

    Google Scholar 

  27. Hanif R, Pittas A, Feng Y, et al. Effects of nonsteroidal anti-inflammatory drugs on proliferation and on induction of apoptosis in colon cancer cells by a prostaglandin-independent pathway. Biochem Pharmacol 1996; 52: 237-245.

    Google Scholar 

  28. Seibert K, Zhang Y, Leahy K, et al. Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc Natl Acad Sci USA 1994; 91: 12013-12017.

    Google Scholar 

  29. Sambrook J, Fritsch F, Maniatis T. Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor, NY, 1989; 2: 9.16-9.19.

    Google Scholar 

  30. De Lean A, Munson PJ, Rodbard D. Simultaneous analysis of families of sigmoidal curves: application to bioassay, radioligand assay, and physiological dose-response curves. Am J Physiol 1978; 235: E97-E102.

    Google Scholar 

  31. Unger WG. Binding of prostaglandin to human serum albumin. J Pharm Pharmacol 1972; 24: 470-477.

    Google Scholar 

  32. Sullivan MHF, Roseblade CK, Rendell NB, Taylor GW, Elder MG. Metabolism of prostaglandins E2 and F2α by human fetal membranes. Biochim Biophis Acta 1992; 1123: 342-346.

    Google Scholar 

  33. Macleod KF, Sherry N, Hannon G, et al. P53-dependent and independent expression of p21 during cell growth, differentiation and DNA damage. Genes Dev 1995; 9: 935-944.

    Google Scholar 

  34. Ahmad N, Feyes DK, Agarwal R, Mukhtar H. Photodynamic therapy results in induction of WAF1/CIP1/P21 leading to cell cycle arrest and apoptosis. Proc Natl Acad Sci USA 1998; 95: 6966-6982.

    Google Scholar 

  35. Archer SY, Meng S, Shei A, Hodin RA. p21WAF1 is required for butyrate-mediate growth inhibition of human colon cancer cells. Proc Natl Acad Sci USA 1998; 95: 6791-6796.

    Google Scholar 

  36. Rodrigues NR, Rowan A, Smith MEF. P53 mutations in colorectal cancer. Proc Natl Acad Sci USA 1990; 87: 7555-7559.

    Google Scholar 

  37. Prescott SM, White RL. Self-promotion? Connections between APC and prostaglandin H synthase-2. Cell 1996; 87: 783-786.

    Google Scholar 

  38. Piazza GA, Kulchak AL, Krutzsch M, et al. Antineoplastic drugs sulindac sulfide and sulfone inhibit cell growth by inducing apoptosis. Cancer Res 1995; 55: 3110-3116.

    Google Scholar 

  39. Chan TA, Morin PJ, Vogelstein B, Kinzler KW. Mechanisms underlying nonsteroidal antiinflammatory drug-mediated apoptosis. Proc Natl Acad Sci USA 1998; 95: 681-686.

    Google Scholar 

  40. Brugarolas J, Chandrasekaran C, Gordon JI, Beach D, Jacks T, Hannon GJ. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 1995; 377: 552-557.

    Google Scholar 

  41. Elder DJE, Hague A, Hicks DJ, Paraskeva C. Differential growth inhibition by the aspirin metabolite salicyclate in human colorectal tumor cells lines: enhanced apoptosis in carcinoma and in vitro-transformed adenoma relative to adenoma cells lines. Cancer Res 1996; 56: 2273-2276.

    Google Scholar 

  42. Desjardins LM, MacManus JP. An adherent cell model to study different stages of apoptosis. Exp Cell Res 1995; 216: 380-387.

    Google Scholar 

  43. Lipkin M. Intermediate biomarkers of increased susceptibility to cancer of the large intestine. In: Augenlicht LH, ed. Cell and Molecular Biology of Colon Cancer. Boca Raton, FL: CRC Press, Inc. 1989: 97-109.

    Google Scholar 

  44. Augeron C, Laboisse CL. Emergence of permanently differentiated cell clones in a human colonic cancer cell line in culture after treatment with sodium butyrate. Cancer Res 1984; 44: 3961-3969.

    Google Scholar 

  45. Aas T, Borresen A-L, Geisler S, et al. Specific p53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nature Medicine 1996; 2: 811-814.

    Google Scholar 

  46. Dittmer D, Pati S, Zambetti G, et al. Gain of function mutations in p53. Nature Gen 1993; 4: 42-46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santini, G., Sciulli, M.G., Marinacci, R. et al. Cyclooxygenase-independent induction of p21WAF-1/cip1, apoptosis and differentiation by L-745,337, a selective PGH synthase-2 inhibitor, and salicylate in HT-29 cells. Apoptosis 4, 151–162 (1999). https://doi.org/10.1023/A:1009631204581

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009631204581

Navigation