Skip to main content
Log in

Effect of some heavy metal ions on copper-induced metallothionein synthesis in the yeast Saccharomyces cerevisiae

  • Published:
Biometals Aims and scope Submit manuscript

Abstract

Copper-induced metallothionein (MT) synthesis in Saccharomyces cerevisiae was investigated in order to associate this exclusively with Cu2+ in vivo, when cultured in nutrient medium containing other heavy metal ions. Expression of the CUP1 promoter/lacZ fusion gene was inhibited by all heavy metal ions tested, especially Cd2+ and Mn2+. By adding Cd2+ and Mn2+ at 10 μM concentration, the β-galactosidase activity decreased by about 80% and 50% of the maximum induction observed with 1 mM CuSO4, respectively. Furthermore, cell growth was markedly inhibited by combinations of 1 mM-Cu2+ and 1 μM-Cd2+. Therefore, the yeast S. cerevisiae could not rely on MT synthesis as one of the copper-resistance mechanisms, when grown in a Cd2+ environment. In contrast, the presence of Mn2+ in the nutrient medium showed alleviation rather than growth inhibition by high concentrations of Cu2+. The recovery from growth inhibition by Mn2+ was due to decreased Cu2+ accumulation. Inhibitory concentrations of Co2+, Ni2+ and Zn2+ on expression of the CUP1p/lacZ fusion gene were at least one order of magnitude higher than that of Cd2+ and Mn2+. These results are discussed in relation to Cu2+ transport and Cu-induced MT synthesis in the copper-resistance mechanism of the yeast S. cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashida J, Higashi N, Kikuchi N.1963 An electronmicroscopic study on copper precipitation by copper-resistant yeast cells. Protoplasma 57, 27-32.

    Google Scholar 

  • Butler G, Thiele DJ. 1991 ACE2, an activator of yeast metallothionein expression which is homologous to SWI5. Mol Cell Biol 11, 476-485.

    Google Scholar 

  • Butt TR, Sternberg EJ, Gorman JA, Clark P, Hamer D, Rosenberg M, Crooke ST. 1984 Copper metallothionein of yeast, structure of the gene, and regulation of expression. Proc Natl Acad Sci. USA 81, 3332-3336.

    Google Scholar 

  • Casareno RLB, Waggoner D, Gitlin JD. 1998 The copper chaperone CCS directly interacts with copper/zinc superoxide dismutase. J Biol Chem 273, 23625-23628.

    Google Scholar 

  • Collins PJ, Dobson ADW. 1997 Regulation of laccase gene transcription in Trametes versicolor. Appl Environ Microbiol 63, 3444-3450.

    Google Scholar 

  • Dameron CT, George GN, Arnord P, Santhanagopalan V, Winge DR. 1993 Distinct metal binding configurations in ACE1. Biochemistry 32, 7294-7301.

    Google Scholar 

  • Dancis A, Haile D, Yuan S, Klausner RD. 1994a The Saccharomyces cerevisiae copper transport protein (Ctr1p). J Biol Chem 269, 25660-25667.

    Google Scholar 

  • Dancis A, Yuan S, Haile D, Askwith C, Eide D, Moehle C, Kaplan J, Klausner RD. 1994b Molecular characterization of a copper transport protein in S. cerevisiae: An unexpected role for copper in iron transport. Cell 76, 393-402.

    Google Scholar 

  • Ecker DJ, Butt TR, Sternberg EJ, Neeper MP, Debouck C, Gorman JA, Crooke ST. 1986 Yeast metallothionein function in metal ion detoxification. J Biol Chem 261, 16895-16900.

    Google Scholar 

  • Eide DJ, Bridgham JT, Zhao Z, Mattoon JR. 1993 The vacuolar H+-ATPase of Saccharomyces cerevisiae is required for efficient copper detoxification, mitochondrial function, and iron metabolism. Mol Gen Genet 241, 447-456.

    Google Scholar 

  • Felix K, Hartmann H-J, Weser U. 1989 Cu(I)-thionein release from copper-loaded yeast cells. Biol Metals 2, 50-54.

    Google Scholar 

  • Furst P, Hu S, Hackett R, Hamer D. 1988 Copper activates metallothionein gene transcription by altering the conformation of a specific DNA binding protein. Cell 55, 705-717.

    Google Scholar 

  • Gadd GM, Mowll JL. 1985 Copper uptake by yeast-like cells, hyphae, and chlamydospores of Aureobasidium pullulans. Exp Mycol 9, 230-240.

    Google Scholar 

  • Graden JA, Winge DR. 1997 Copper-mediated repression of the activation domain in the yeast Mac1p transcription factor. Proc Natl Acad Sci USA 94, 5550-5555.

    Google Scholar 

  • Hartmann H-J, Weser U. 1985 Cobalt-(cysteinyl)4 tetrahedra in yeast cobalt(II)-thionein. Biochim Biophys Res Commn 132, 277-283.

    Google Scholar 

  • Inouhe M, Hiyama M, Tohoyama H, Joho M, Murayama T. 1989 Cadmium-binding protein in a cadmium-resistant strain of Saccharomyces cerevisiae. Biochim Biophys Acta 993, 51-55.

    Google Scholar 

  • Jensen LT, Winge DR. 1998 Identification of a copper-induced intramolecular interaction in the transcription factor Mac1 from Saccharomyces cerevisiae. EMBO J 17, 5400-5408.

    Google Scholar 

  • Kikuchi N. 1965 Studies on the pathway of sulfide production in a copper-adapted yeast. Plant Cell Physiol 6, 195-210.

    Google Scholar 

  • Lin C-M, Crawford BF, Kosman DJ. 1993 Distribution of 64Cu in Saccharomyces cerevisiae: kinetic analyses of partitioning. J Gen Microbiol 139, 1617-1626.

    Google Scholar 

  • Lin C, Kosman DJ. 1990 Copper uptake in wild type and copper metallothionein-deficient Saccharomyces cerevisiae. J Biol Chem 265, 9194-9200.

    Google Scholar 

  • Miller JH. 1972 Assay of β-galactosidase. In: Experiments in Molecular Genetics, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 325-355.

    Google Scholar 

  • Ochiai E. 1983 Copper and the biological evolution. BioSystems 16, 81-86.

    Google Scholar 

  • Ooi CE, Rabinovich E, Dancis A, Bonifacino JS, Klausner RD. 1996 Copper-dependent degradation of the Saccharomyces cerevisiae plasma membrane copper transporter Ctr1p in the apparent absence of endocytosis. EMBO J 15, 3515-3523.

    Google Scholar 

  • Pena MMO, Koch KA, Thiele DJ. 1998 Dynamic regulation of copper uptake and detoxification genes in Saccharomyces cerevisiae. Mol Cell Biol 18, 2514-2523.

    Google Scholar 

  • Pufahl RA, Singer CP, Peariso KL, Lin S-J, Schmidt PJ, Fahrni CJ, Culotta VC, Penner-Hhn JE, O'Halloran TV. 1997 Metal ion chaperone function of the soluble Cu(I) receptor Atx1. Science 278, 853-856.

    Google Scholar 

  • Rae TD, Schmidt PJ, Pufahl RA, Culotta VC, O'Halloran TV. 1999 Undetectable intracellular free copper: The requirement of a copper chaperone for superoxide dismutase. Science 284, 805-808.

    Google Scholar 

  • Ramsay LM, Gadd GM. 1997 Mutants of Saccharomyces cerevisiae defective in vacuolar function confirm a role for the vacuole in toxic metal ion detoxification. FEMS Microbiol Lett 152, 293-298.

    Google Scholar 

  • Srinivasan CS, Posewitz MC, George GN, Winge DR. 1998 Characterization of the copper chaperone Cox 17 of Saccharomyces cerevisiae. Biochemistry 37, 7572-7577.

    Google Scholar 

  • Szcypka MS, Thiele DJ. 1989 A cysteine-rich nuclear protein activates yeast metallothionein gene transcription. Mol Cell Biol 9, 421-429.

    Google Scholar 

  • Szcypka MS, Zhu Z, Silar P, Thiele DJ. 1997 Saccharomyces cerevisiae mutants altered in vacuole function are defective in copper detoxification and iron-responsive gene transcription. Yeast 13, 1423-1435.

    Google Scholar 

  • Thiele DJ. 1988 ACE1 regulates expression of the Saccharomyces cerevisiae metallothionein gene. Mol Cell Biol 8, 2745-2752.

    Google Scholar 

  • Thorvaldsen JL, Sewell AK, McCowen CL, Winge DR. 1993 Regulation of metallothionein genes by the ACE1 and AMT1 transcription factors. J Biol Chem 268, 12512-12518.

    Google Scholar 

  • Tohoyama H, Inouhe M, Joho M, Murayama T. 1990 Resistance to cadmium is under the control of the CAD2 gene in the yeast Saccharomyces cerevisiae. Curr Genet 18, 181-185.

    Google Scholar 

  • Valentine JS, Gralla EB. 1997 Delivering copper inside yeast and human cells. Science 278, 817-818.

    Google Scholar 

  • Weser U, Mutter W, Hartmann H-J. 1986 The role of Cu(I)-thiolate clusters during the proteolysis of Cu-thionein. FEBS Lett 197, 258-262.

    Google Scholar 

  • Welch J, Fogel S, Cathala g, Karin M. 1983 Industrial yeasts display tandem gene iteration at the CUP1 region. Mol Cell Biol 3, 1353-1361.

    Google Scholar 

  • Welch J, Fogel S, Buchmann C, Karin M. 1989 The CUP2 gene product regulates the expression of the CUP1 gene coding for yeast metallothionein. EMBO J 8, 255-260.

    Google Scholar 

  • Winge DR, Nielson KB, Gray WR, Hamer DH. 1985 Yeast metallothionein. J Biol Chem 260, 14464-14470.

    Google Scholar 

  • Yamaguchi-Iwai Y, Serpe M, Haile D, Yang W, Kosman DJ, Klausner RD, Dancis A. 1997 Homeostatic regulation of copper uptake in yeast via direct binding of MAC1 protein to upstream regulatory sequences of FRE1 and CTR1. J Biol Chem 272, 17711-17718.

    Google Scholar 

  • Yu W, Farrell RA, Stillman DJ, Winge DR. 1996 Identification of SLF1 as a new copper homeostasis gene involved in copper sulfide mineralization in Saccharomyces cerevisiae. Mol Cell Biol 16, 2464-2472.

    Google Scholar 

  • Yuan DS, Dancis A, Klausner RD. 1997 Restriction of copper export in Saccharomyces cerevisiae to a late Golgi or post-Golgi compartment in the secretory pathway. J Biol Chem 272, 25787-25793.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okuyama, Ma., Kobayashi, Y., Inouhe, M. et al. Effect of some heavy metal ions on copper-induced metallothionein synthesis in the yeast Saccharomyces cerevisiae. Biometals 12, 307–314 (1999). https://doi.org/10.1023/A:1009258523040

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009258523040

Navigation