Skip to main content
Log in

Nuclear calcium: a key regulator of gene expression

  • Published:
Biometals Aims and scope Submit manuscript

Abstract

Through the evolution of multicellular organisms, calcium has emerged as the preferred ion for intracel-lular signalling. It now occupies a pivotal role in many cell types and nowhere is it more important than in neurons, where it mediates both the relaying and long-term storage of information. The latter is a process that enables learning and memory to be formed and requires the activation of gene expression by calcium signals. Evidence from a number of diverse organisms shows that transcription mediated by the transcrip-tion factor CREB is critical for learning and memory. Here we review the features of CREB activation by calcium signals in mammalian cells. In contrast to other transcription factors, its regulation is dependent on an elevation of nuclear calcium concentration, potentially placing this spatially distinct pool of calcium as an important mediator of information storage.© Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abel, T., Nguyen, P., Barad, M., Deuel, T., and Kandel, E. (1997). Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus based long-term memory. Cell 88, 615–26.

    Google Scholar 

  • Arias, J., Alberts, A. S., Brindle, P., Claret, F. X., Smeal, T., Karin, M., Feramisco, J., and Montminy, M. (1994). Activation of cAMP and mitogen responsive genes relies on a common nuclear factor. Nature 370, 226–229.

    Google Scholar 

  • Bading, H., Ginty, D. D., and Greenberg, M. E. (1993). Regulation of gene expression in hippocampal neurons by distinct calcium signalling pathways. Science 260, 181–186.

    Google Scholar 

  • Bading, H., and Greenberg, M. E. (1991). Stimulation of protein tyrosine phosphorylation by NMDA receptor activation. Science 253, 912–914.

    Google Scholar 

  • Bading, H., Hardingham, G. E., Johnson, C. M., and Chawla, S. (1997). Gene regulation by nuclear and cytoplasmic calcium signals. Biochem. Biophys. Res. Com. 236, 541–543.

    Google Scholar 

  • Bading, H., Segal, M. M., Sucher, N. J., Dudek, H., Lipton, S. A., and Greenberg, M. E. (1995). N-methyl-D-aspartate receptors are critical for mediating the effects of glutamate on intracellular calcium concentration and immediate early gene expression in cultured hippocampal neurons. Neuroscience 64, 653–664.

    Google Scholar 

  • Badminton, M., Kendall, J., Rembold, C., and Campbell, A. (1998). Current evidence suggests independent regulation of nuclear calcium. Cell Calcium 23, 79–86.

    Google Scholar 

  • Bailey, C., and Kandel, E. (1994). Structural changes underlying long-term memory storage in Aplysia: a molecular perspective. Neurosciences 6, 35–44.

    Google Scholar 

  • Bannister, A., and Kouzarides, T. (1996). The CBP coactivator is a histone acetyltransferase. Nature 384, 641–643.

    Google Scholar 

  • Bannister, A. J., Oehler, T., Wilhelm, D., Angel, P., and Kouzarides, T. (1995). Stimulation of c-Jun activity by CBP: c-Jun residues Ser63/73 are required for CBP induced stimulation in vivo and CBP binding in vitro. Oncogene 11, 2509–2514.

    Google Scholar 

  • Bashir, Z., Bortolotto, Z., Davies, C., Berretta, N., Irving, A., Seal, A., Henley, J., Jane, D., Watkins, J., and Collingridge, G. (1993). Induction of LTP in the hippocampus needs synaptic activation of glutamate metabotropic receptors. Nature 363, 347–350.

    Google Scholar 

  • Berridge, M. (1993). Inositol triphosphate and calcium signalling. Nature 361, 315–325.

    Google Scholar 

  • Bhattacharya, S., Eckner, R., Grossman, S., Oldread, E., Arany, Z., D'Andrea, A., and Livingston, D. (1996). Co-operation of STAT2 and p300/CBP in signalling induced by interferon-a. Nature 383, 226–228.

    Google Scholar 

  • Bito, H., Deisseroth, K., and Tsien, R. (1996). CREB phosphorylation and dephosphorylation: a calcium and stimulus dependent switch for hippocampal gene expression. Cell, 1203–1214.

  • Bliss, T. V. P., and Collingridge, G. L. (1993). A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–38.

    Google Scholar 

  • Bliss, T. V. P., and Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetised rabbit following stimulation of the perforant path. Journal of Physiology 232, 331–356.

    Google Scholar 

  • Bockaert, J., and Pin, J. (1997). Metabotropic glutamate receptors: 10 years of research. In 'Recombinant cell surface receptors: Focal point for therapeutic intervention' (M. Brown, Ed.). Academic Press, Georgetown, USA.

    Google Scholar 

  • Bonni, A., Ginty, D. D., Dudek, H., and Greenberg, M. E. (1995). Serine 133-phosphorylated CREB induces transcription via a co-operative mechanism that may confer specificity to neurotrophin signals. Molecular and Cellular Neuroscience 6, 168–183.

    Google Scholar 

  • Bootman, M., Berridge, M., and Lipp, P. (1997). Cooking with calcium: the recipes for creating global signals from elementary events. Cell 91, 367–374.

    Google Scholar 

  • Bortolotto, Z., and Collingridge, G. (1993). Characterisation of LTP induced by the activation of glutamate metabotropic receptors in area CA1 of the hippocampus. Neuropharmacology 32, 1–9.

    Google Scholar 

  • Bourtchuladze, R., Frenguelli, B., Blendy, J., Cioffi, D., Schutz, G., and Silva, A. J. (1994). Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79, 59–68.

    Google Scholar 

  • Byrne, J., Zwartjes, R., Homayouni, R., Critz, S., and Eskin, A. (1993). 'Roles of second messenger pathways in neuronal plasticity and in learning and memory. Insights gained from Aplysia.' Raven, New York.

  • Carafoli, E., and Penniston, J. (1985). The calcium signal. Scientific American 253, 50–58.

    Google Scholar 

  • Cardenas, M., and Heitman, J. (1995). Role of calcium in T-lymphocyte activation. Advances in second messenger and phosphoprotein research 30, 281–298.

    Google Scholar 

  • Carew, T., Walters, E., and Kandel, E. (1981). Classical conditioning in a simple withdrawal reflex in Aplysia californica. Journal of Neuroscience 1, 1426–1437.

    Google Scholar 

  • Chakravarti, D., LaMorte, V. J., Nelson, M. C., Nakajima, T., Schulman, I. G., Juguilon, H., Montminy, M., and Evans, R. M. (1996). Role of CBP/P300 in nuclear receptor signalling. Nature 383, 99–102.

    Google Scholar 

  • Chen, H., Lin, R., Schiltz, R., Chakravati, D., Nash, A., Nagy, L., Privalsky, M., Kakatini, Y., and Evans, R. (1997). Nuclear receptor coactivator ACTR is a novel histone acetyl transferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90, 569–580.

    Google Scholar 

  • Chrivia, J. C., Kwok, R. P. S., Lamb, N., Hagiwara, M., Montminy, M. R., and Goodman, R. H. (1993). Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365, 855–859.

    Google Scholar 

  • Cole, A. J., Saffen, D. W., Baraban, J. M., and Worley, P. F. (1989). Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature 340, 474–476.

    Google Scholar 

  • Comb, M., Birnberg, N., Seasholtz, A., Herbert, E., and Goodman, H. (1986). A cyclic AMP and phorbol ester-inducible DNA element. Nature 323, 353–356.

    Google Scholar 

  • Cruzalegui, F. H., Kapiloff, M. S., Morfin, J. P., Kemp, B. E., Rosenfield, M. G., and Means, A. R. (1992). Regulation of Intrasteric inhibition of the multifunctional calcium/calmodulin-dependent protein kinase. Proceedings of the National Academy of Sciences, USA 89, 12127–12131.

    Google Scholar 

  • Cruzalegui, F. H., and Means, A. R. (1993). Biochemical characterisation of the multifunctional Ca2+/calmodulin dependent protein kinase type IV expressed in insect cells. Journal of Biological Chemistry 268, 26171–26178.

    Google Scholar 

  • Dash, P., Hochner, B., and Kandel, E. (1990). Injection of the CRE into the nucleus of Aplysia sensory neurons blocks long term facilitation. Nature 345, 718–721.

    Google Scholar 

  • Davis, R. (1994). MAPKs: new JNK expands the group. Trends in Biochemical Sciences 19, 470–473.

    Google Scholar 

  • Deisseroth, K., Heist, E., and Tsien, R. (1998). Calmodulin translocation to the nucleus supports CREB phosphorylation in hippocampal neurons. Nature 392, 198–202.

    Google Scholar 

  • DeKonick, P., and Schulman, H. (1998). Sensitivity of CaM kinase II to the frequency of calcium oscillations. Science 279, 227–230.

    Google Scholar 

  • Drain, P., Folkers, E., and Quinn, W. (1991). cAMP dependent protein kinase and the disruption of learning in transgenic flies. Neuron 6, 71–82.

    Google Scholar 

  • Frey, U., Huang, Y.-Y., and Kandel, E. R. (1993). Effects of cAMP simulate a late stage of LTP in hippocampal CA1 Neurons. Science 260, 1661–1664.

    Google Scholar 

  • Ghosh, A., and Greenberg, M. (1995). Calcium signalling in neurons-molecular mechanisms and cellular consequences. Science 268, 239–247.

    Google Scholar 

  • Giese, K., Fedorov, N., Filipkowski, R., and Silva, A. (1998). Autophosphorylation at Thr 286 of the a calcium/calmodulin dependent kinase II in LTP and Learning. Science 279, 870–873.

    Google Scholar 

  • Ginty, D. D., Bonni, A., and Greenberg, M. E. (1994). Nerve growth factor activates a Ras-dependent protein kinase that stimulates c-fos transcription via phosphorylation of CREB. Cell 77, 713–725.

    Google Scholar 

  • Gu, W., Shi, X., and Roeder, R. (1997). Synergistic activation of transcription by CBP and p53. Nature 387, 819–822.

    Google Scholar 

  • Guzowski, G., and McGaugh, J. (1997). Antisense oligodeoxynucleotide-mediated disruption of hippocampal CREB protein levels impairs memory of a spatial task. Proceedings of the National Academy of Sciences USA 94, 2693–98.

    Google Scholar 

  • Hardingham, G. E., Chawla, S., Johnson, C. M., and Bading, H. (1997). Distinct functions of nuclear and cytoplasmic calcium in the control of gene expression. Nature 385, 360–365.

    Google Scholar 

  • Hardingham, G. E., Cruzalegui, F., Chawla, S., and Bading, H. (1998). Mechanisms controlling gene expression by nuclear calcium signals. Cell Calcium 23, 131–134.

    Google Scholar 

  • Harvey, J., and Collingridge, G. (1992). Thapsigargin blocks the induction of LTP in rat hippocampal slices. Neuroscience letters 139, 197–200.

    Google Scholar 

  • Hebbes, T., Thorne, A., and Crane-Robinson, C. (1988). A direct link between core histone acetylation and transcriptionally active chromatin. EMBO Journal 7, 1395–1402.

    Google Scholar 

  • Heist, E., and Schulman, H. (1998). The role of Ca2+/calmodulin dependent protein kinases within the nucleus. Cell Calcium 23, 103–114.

    Google Scholar 

  • Hill, C. S., and Treisman, R. (1995a). Transcriptional regulation by extracellular signals: mechanisms and specificity. Cell 80, 199–211.

    Google Scholar 

  • Hill, C. S., and Treisman, R. (1995b). Differential activation of c-fos promoter elements by serum, lysophosphatidic acid, G proteins and polypeptide growth factors. The EMBO Journal 14, 5037–5047.

    Google Scholar 

  • Hoeffler, J., Meyer, T., Yun, Y., Jameson, J., and Habener, J. (1988). cAMP responsive DNA-binding protein-structure based on cloned placental cDNA. Science 242, 1430–1433.

    Google Scholar 

  • Humbert, J., Matter, A., Artault, J., Koppler, P., and Malviya, A. (1996). Inositol 1, 4, 5 trisphosphate receptor is located to the inner nuclear membrane vindicating regulation of nuclear calcium signalling by inositol 1, 4, 5 trisphosphate. Journal of Biological Chemistry 271, 478–485.

    Google Scholar 

  • Hummler, E., Cole, T., Blendy, J., Ganss, R., Aguzzi, A., Schmid, W., Beermann, F., and Shultz, G. (1994). Targeted mutation of the cAMP-response element binding protein (CREB) gene: compensation within the CREB/ATF family of transcription factors. Proceedings of the National Academy of Sciences USA 91, 5647–5651.

    Google Scholar 

  • Hunter, T., and Karin, M. (1992). The regulation of transcription by phosphorylation. Cell 70, 375–387.

    Google Scholar 

  • Impey, S., Mark, M., Villacres, E. C., Poser, S., Chavkin, C., and Storm, D. R. (1996). Induction of CRE-mediated gene expression by stimuli that generate longlasting LTP in Area CA1 of the hippocampus. Neuron 16, 973–982.

    Google Scholar 

  • Janknecht, R., and Nordheim, A. (1996a). Regulation of the c-fos promoter by the ternary complex factor Sap-1a nad its coactivator CBP. Oncogene 12, 1961–1969.

    Google Scholar 

  • Janknecht, R., and Nordheim, A. (1996b). MAP Kinase-dependent transcriptional coactivation by Elk-1 and its cofactor CBP. Biochemical Biophysical Research Communications 228, 831–837.

    Google Scholar 

  • Jensen, K. F., Ohmstede, C.-A., Fisher, R. S., and Sayhoun, N. (1991). Nuclear and axonal localization of Ca2+/calmodulin-dependent protein kinase type Gr in rat cerebellar cortex. Proceedings of the National Academy of Sciences USA 88, 2850–2853.

    Google Scholar 

  • Johnson, C. M., Hill, C. S., Chawla, S., Treisman, R., and Bading, H. (1997). Calcium controls gene expression via three distinct pathways that can function independently of the Ras/MAP kinase (ERKs) signalling cascade. Journal of Neuroscience 17, 6189–6202.

    Google Scholar 

  • Kandel, E., and Schwartz, J. (1982). Molecular biology of learning-modulation of transmitter release. 1982 218, 433–443.

    Google Scholar 

  • Kawasaki, H., Morooka, T., Shimohama, S., Kimura, J., Hirano, T., Gotoh, Y., and Nishida, E. (1997). Activation and involvement of p38 mitogen-activated protein kinase in glutamate-induced apoptosis in rat cerebellar granule cells. J. Biol. Chem. 272, 18518–18521.

    Google Scholar 

  • Kogan, J., Frankland, P., Blendy, J., Coblentz, J., Marowitz, Z., Schutz, G., and Silva, A. (1997). Spaced training induces normal long-term memory in CREB-mutant mice. Current Biology 7, 1–11.

    Google Scholar 

  • Kullman, D. M., and Siegelbaum, S. A. (1995). The site of expression of NMDA-receptor dependent LTP: new fuel for old fire. Neuron 15, 997–1002.

    Google Scholar 

  • Kwok, R. P. S., Lundblad, J. R., Chrivia, J. C., Richards, J. P., Bachinger, H. P., Brennan, R. G., Roberts, S. G. E., Green, M. R., and Goodman, R. H. (1994). Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 370, 223–226.

    Google Scholar 

  • Larkman, A., and Jack, J. (1995). Synaptic Plasticity-hippocampal LTP. Current Opinion in neurobiology 5, 324–334.

    Google Scholar 

  • Lin, C., Kapiloff, M., Durgerian, S., Tatemoto, K., Russo, A., Hanson, P., Schulman, H., and Rosenfeld, M. (1987). Molecular cloning of a brain specific calcium/calmodulin dependent protein kinase. Proceedings of the National Academy of Sciences USA 84, 5962–5966.

    Google Scholar 

  • Lipp, P., Thomas, D., Berridge, M., and Bootman, M. (1997). Nuclear calcium signalling by individual cytoplasmic calcium puffs. EMBO Journal 16, 7166–7173.

    Google Scholar 

  • Lynch, G., Larson, J., Kelso, S., Barrionuevo, G., and Schottler, F. (1983). Intracellular injections of EGTA block induction of hippocampal long-term potentiation. Nature 305, 719–721.

    Google Scholar 

  • Malenka, R. (1994). Synaptic plasticity in the hippocampus: LTP and LTD. Cell 78, 535–538.

    Google Scholar 

  • Malenka, R., Kauer, J., Zucker, R., and Nicoll, R. (1988). Post-synaptic calcium is sufficient for potentiation of hippocampal synaptic transmission. Science 242, 81–84.

    Google Scholar 

  • Malinow, R., Schulman, H., and Tsien, R. W. (1989). Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science 245, 862–866.

    Google Scholar 

  • Martinez-Balbas, M. A., Bannister, A., Martin, K., Haus-Seuffert, P., Meisterernst, M., and Kouzarides, T. (1998). The acetyltransferase activity of CBP stimulates transcription. EMBO Journal 17, 2886–2893.

    Google Scholar 

  • Matthews, R. P., Guthrie, C. R., Wailes, L. M., Zhao, X., Means, A. R., and McKnight, G. S. (1994). Calcium/calmodulin-dependent protein kinase types II and IV differentially regulate CREB-dependent gene expression. Molecular and Cellular Biology 14, 6107–6116.

    Google Scholar 

  • Mayford, M., Bach, N., Huang, Y., Wang, L., Hawkins, R., and Kandel, E. (1996). Control of memory formation through regulated expression of a CaMKII transgene. Science 274, 1678–1683.

    Google Scholar 

  • Meyer, T., Hanson, P., Stryer, L., and Schulman, H. (1992). Calmodulin trapping by CaM kinase II. Science 256, 1199–1202.

    Google Scholar 

  • Miller, S., and Kennedy, M. (1986). Regulation of brain type-II calcium/calmodulin dependent protein kinase by autophosphorylation-a calcium/calmodulin dependent molecular switch. Cell 44, 861–870.

    Google Scholar 

  • Milner, B., Corkin, S., and Teurber, H. (1968). Further analysis of the hippocampal amnesic syndrome: 14 year follow-up study of H.M. Neurophysiologia 6, 215–234.

    Google Scholar 

  • Misra, R. P., Bonni, A., Miranti, C. K., Rivera, V. M., Sheng, M., and Greenberg, M. E. (1994). L-type voltage-sensitive calcium channel activation stimulates gene expression by a serum response factor-dependent pathway. The Journal of Biological Chemistry 269, 25483–25493.

    Google Scholar 

  • Montarolo, P., Goelet, P., Castelucci, J., Morgan, J., Kandel, E., and Schacher, S. (1986). A critical period fro macromolecular synthesis in long-term heterosynaptic facilitaion in Aplysia. Science 234, 1249–1254.

    Google Scholar 

  • Montminy, M. R., and Bilezikjian, L. M. (1987). Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene. Nature 328, 175–178.

    Google Scholar 

  • Montminy, M. R., Sevarino, K. A., Wagner, J. A., Mandel, G., and Goodman, R. H. (1986). Identification of a cyclic-AMP-responsive element within the rat somatostatin gene. Proceedings of the National Academy of Sciences, USA 83, 6682–6686.

    Google Scholar 

  • Morgan, J. I., and Curran, T. (1986). Role of ion influx in the control of c-fos expression. Nature 322, 552–555.

    Google Scholar 

  • Morris, R., Anderson, E., Lynch, G., and Baudry, M. (1986). Selective impairment of learning and blockade of long-term potentiation by an NMDA receptor antagonist, AP5. Nature 319, 774–776.

    Google Scholar 

  • Nadel, L., and Moscovitch, M. (1997). Memory consolidation, retrograde amnesia and the hippocampal complex. Current Opinion in Neurobiology 7, 217–227.

    Google Scholar 

  • Nakajima, T., Uchida, C., Anderson, S. E., Parvin, J. D., and Montminy, M. (1997). Analysis of a cAMP-responsive activator reveals a two component mechanism for transcriptional induction via signal-dependent factors. Genes and Development 11, 738–747.

    Google Scholar 

  • Neylon, C., Hoyland, J., Mason, W., and Irvine, R. (1990). Spatial dynamics of intracellular calcium in agonist-stimulated vascular smooth muscle cells. American journal of Physiology 259, C675–C686.

    Google Scholar 

  • Nguyen, P. V., Abel, T., and Kandel, E. R. (1994). Requirement of a critical period of transcription for induction of a late phase of LTP. Science 265, 1104–1107.

    Google Scholar 

  • Norman, C., Runswick, M., Pollock, R., and Treisman, R. (1988). Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell 55, 989–1003.

    Google Scholar 

  • Ohmstede, C.-A., Jensen, K. F., and Sahyoun, N. E. (1989). Ca2+/Calmodulin-dependent protein kinase enriched in cerebellar granule cells. Journal of Biological Chemistry 264, 5866–5875.

    Google Scholar 

  • Parker, D., Ferreri, K., Nakajima, T., Lamorte, V. J., Evans, R., Koerber, S. C., Hoeger, C., and Montminy, M. R. (1996). Phosphorylation of CREB at ser-133 induces complex formation with the CREB-binding protein via a direct mechanism. Molecular and Cellular Biology 16, 694–703.

    Google Scholar 

  • Ptashne, M., and Gann, A. (1997). Transcriptional activation by recruitment. Nature 386, 569–577.

    Google Scholar 

  • Robertson, E., English, J., and Sweatt, J. (1996). A biochemists view of LTP. Learning and memory 3, 1–24.

    Google Scholar 

  • Roeder, R. G. (1996). The role of general initiation factors in transcription by RNA polymerase II. Trends in Biochemical Sciences 21, 327–334.

    Google Scholar 

  • Rosen, L. B., Ginty, D. D., Weber, M. J., and Greenberg, M. E. (1994). Membrane depolarization and calcium influx stimulate MEK and MAP kinase via activation of Ras. Neuron 12, 1207–1221.

    Google Scholar 

  • Rouse, J., Cohen, P., Trigon, S., Morange, M., Liamazares, A., Zamanillo, D., Hunt, T., and Nebrada, A. (1994). A novel kinase cascade triggered by stress and heat shock that stimulates MAP KAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 78, 1027–1037.

    Google Scholar 

  • Schröter, H., Shaw, P. E., and Nordheim, A. (1987). Purification of intercalator-released p67, a polypeptide that interacts specifically with the c-fos serum response element. Nucleic Acids Research 15, 10145–10157.

    Google Scholar 

  • Schulman, H. (1993). The multifunctional Ca2+/calmodulin-dependent protein kinases. Current Opinion in Cell Biology 5, 247–253.

    Google Scholar 

  • Shankar, G., Davison, I., Helfrich, M. H., Mason, W. T., and Horton, M. A. (1993). Integrin receptor-mediated mobilization of intranuclear calcium in rat osteoclasts. ournal of Cell Science 105, 61–68.

    Google Scholar 

  • Shen, S. (1995). Mechanisms of calcium regulation in sea-urchin eggs and their activities during fertilisation. Current topics in developmental biology 30, 63–101.

    Google Scholar 

  • Sheng, M., Dougan, S. T., McFadden, G., and Greenberg, M. E. (1988). Calcium and growth factor pathways of c-fos transcriptional activation require distinct upstream regulatory sequences. Molecular and Cellular Biology 8, 2787–2796.

    Google Scholar 

  • Sheng, M., McFadden, G., and Greenberg, M. E. (1990a). Membrane depolarization and calcium induce c-fos transcription via phosphorylation of transcription factor CREB. Neuron 4, 571–582.

    Google Scholar 

  • Sheng, M. E., Thompson, M. A., and Greenberg, M. E. (1991). CREB: a Ca2+-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science 252, 1427–1430.

    Google Scholar 

  • Silva, A. J., Paylor, R., Wehner, J. M., and Tonegawa, S. (1992b). Impaired spatial learning in a-calcium-calmodulin kinase II mutant mice. Science 257, 206–211.

    Google Scholar 

  • Silva, A. J., Stevens, C. F., Tonegawa, S., and Wang, Y. (1992a). Deficient hippocampal long-term potentiation in a-calcium-calmodulin kinase II mutant mice. Science 257, 201–206.

    Google Scholar 

  • Sun, P., Enslen, H., Myung, P. S., and Maurer, R. A. (1994). Differential activation of CREB by Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes & Development 8, 2527–2539.

    Google Scholar 

  • Swope, D., Mueller, C., and Chrivia, J. (1996). CREB-binding protein activates transcription through multiple domains. Journal of Biological Chemistry 271, 28138–28145.

    Google Scholar 

  • Tan, Y., Rouse, J., Zhang, A., Cariati, S., Cohen, P., and Comb, M. J. (1996). FGF and stress regulate CREB and ATF-1 via a pathway involving p38 MAP kinase and MAPKAP kinase-2. The EMBO Journal, 4629–4642.

  • Treisman, R. (1985). Transient accumulation of c-fos RNA following serum stimulation requires a conserved 5' element and c-fos 3' sequences. Cell 42, 889–902.

    Google Scholar 

  • Treisman, R. (1987). Identification and purification of a polypeptide that binds to the c-fos serum response element. The EMBO Journal 6, 2711–2717.

    Google Scholar 

  • Tully, T., Preat, T., Boynton, S. C., and Del Vecchio, M. (1994). Genetic dissection of consolidated memory in Drosophila. Cell 79, 35–47.

    Google Scholar 

  • Turner, B., and O'Neill, L. (1995). Histone acetylation on chromatin and chromosomes. Seminars in Cell Biology 6, 229–236.

    Google Scholar 

  • Verkhratsky, A., and Schmigol, A. (1996). Calcium induced calcium release in neurons. Cell Calcium 19, 1–14.

    Google Scholar 

  • Whishaw, I., McKenna, J., and Maaswinkel, H. (1997). Hippocampal lesions and path integration. Current Opinion in Neurobiology 7, 228–234.

    Google Scholar 

  • Williams, D., Fogarty, K., Tsien, R., and Fay, F. (1985). Calcium gradients in single smooth muscle cells revealed by the digital imaging microscope using Fura-2. Nature 318, 558–561.

    Google Scholar 

  • Wisden, W., Errington, M. L., Williams, S., Dunnett, S. B., Waters, C., Hitchcock, D., Evan, G., Bliss, T. V. P., and Hunt, S. P. (1990). Differential expression of immediate early genes in the hippocampus and spinal cord. Neuron 4, 603–614.

    Google Scholar 

  • Worley, P. F., Bhat, R. V., Barban, J. M., Erickson, C. A., McNaughton, B. L., and Barnes, C. A. (1993). Thresholds for synaptic activation of transcription factors in hippocampus: correlation with long-term enhancement. The Journal of Neuroscience 13, 4776–4786.

    Google Scholar 

  • Xing, J., Ginty, D. D., and Greenberg, M. E. (1996). Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science 273, 959–963.

    Google Scholar 

  • Yao, T., Ku, G., Zhou, N., Scully, R., and Livingston, D. (1996). The nuclear hormone receptor coactivator SRC-1 is a specific target of p300. Proceedings of the National Academy of Sciences USA 93, 319–324.

    Google Scholar 

  • Yin, J., Vecchio, M. D., Zhou, H., and Tully, T. (1995b). CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long term memory in Drosophila. Cell 81, 107–115.

    Google Scholar 

  • Yin, J., Wallach, J., Wilder, E., Klingensmith, J., Dang, D., Perrimon, N., Zhou, H., Tully, T., and Quinn, W. (1995a). A Drosophila CREB/CREM homologue encodes multiple isoforms, including a cAMP dependent protein kinase responsive transcriptional activator and antagonist. Molecular Cell Biology , 5123–5130.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hardingham, G.E., Bading, H. Nuclear calcium: a key regulator of gene expression. Biometals 11, 345–358 (1998). https://doi.org/10.1023/A:1009257909785

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009257909785

Navigation