Advertisement

Statistics and Computing

, Volume 9, Issue 3, pp 203–207 | Cite as

Partially-latinized designs

  • J. A. John
  • E. R. Williams
Article

Abstract

An interchange optimization algorithm to construct partially-latinized designs is described. The objective function is a weighted linear combination of up to five functions, each of which corresponds to a blocking factor of the required design. Nested simulated annealing is used to address local optima problems. The average efficiency factors of the generated designs are assessed against theoretical upper bounds.

A-optimality average efficiency factor interchange algorithm latinized designs (M,S)-optimality resolvable designs row-column designs simulated annealing upper bounds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eccleston, J. A. and Hedayat, A. (1974) On the theory of con-nected designs: characterization and optimality. Ann. Statist., 2, 1238–55.Google Scholar
  2. Eccleston, J. A. and McGilchrist, C. A. (1985) Algebra of a row-column design. J. Statist. Planning and Inference, 12, 305–10.Google Scholar
  3. Harshbarger, B. and Davis, L. L. (1952) Latinized rectangular lattices. Biometrics, 8, 73–84.Google Scholar
  4. John, J. A. and Street, D. J. (1992) Bounds for the effciency factor of row-column designs. Biometrika, 79, 658–61.Google Scholar
  5. John, J. A. and Williams, E. R. (1982) Conjectures for optimal block designs. J. Roy. Statist. Soc. B, 44, 221–25.Google Scholar
  6. John, J. A. and Williams, E. R. (1995) Cyclic and Computer Generated Designs. Chapman & Hall, London.Google Scholar
  7. Payne, R. W., Lane, P. W., Digby, P. G. N., Harding, S. A., Morgan, G. W., Todd, A. D., Thompson, R., Tunnicliffe Wilson, G., Welham, S. J. and White, R. P. (1993) Genstat 5 Release 3 Reference Manual. Oxford: Clarendon.Google Scholar
  8. SAS Institute (1992) SAS/STAT Software, Release 6.07. Cary: SAS Institute.Google Scholar
  9. Shah, K. R. (1960) Optimality criteria for incomplete block de-signs. Ann. Math. Statist., 31, 791–94.Google Scholar
  10. Whitaker, D. (1995) Nested simulated annealing algorithm. J. Statist. Comp. Simul., 53, 233–41.Google Scholar
  11. Whitaker, D., Williams E. R. and John, J. A. (1997) CycDesigN: A Package for the Computer Generation of Experimental Designs. CSIRO, Canberra.Google Scholar
  12. Williams, E. R. (1986) Row and column designs with contiguous replicates. Austral. J. Statist., 28, 154–63.Google Scholar
  13. Williams, E. R. and John, J. A. (1993) Upper bounds for latinized designs. Austral. J. Statist., 35, 229–36.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • J. A. John
  • E. R. Williams

There are no affiliations available

Personalised recommendations