Formal Methods in System Design

, Volume 17, Issue 2, pp 135–161 | Cite as

An Implementation of Constructive Synchronous Programs in POLIS

  • Gérard Berry
  • Ellen M. Sentovich


Design tools for embedded reactive systems commonly use a model of computation that employs both synchronous and asynchronous communication styles. We form a junction between these two with an implementation of synchronous languages and circuits (Esterel) on asynchronous networks (POLIS). We implement fact propagation, the key concept of synchronous constructive semantics, on an asynchronous non-deterministic network: POLIS nodes (CFSMs) save state locally to deduce facts, and the network globally propagates facts between them. The result is a correct implementation of the synchronous input/output behavior of the program. Our model is compositional, and thus permits implementations at various levels of granularity from one CFSM per circuit gate to one CFSM per circuit. This allows one to explore various tradeoffs between synchronous and asynchronous implementations.

embedded systems synchronous programming finite state machines asynchronous networks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Amadio and P.L. Curien, Domains and Lambda-Calculi, Cambridge University Press, 1998.Google Scholar
  2. 2.
    C. André, “Representation and analysis of reactive behaviors: A synchronous approach,” in Proc. CESA'96, Lille, France, July 1996.Google Scholar
  3. 3.
    F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, C. Passerone, A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki, and B. Tabbara, Hardware-Software Co-Design of Embedded Systems: The POLIS Approach, Kluwer Academic Press, June 1997.Google Scholar
  4. 4.
    F. Balarin, H. Hsieh, A. Jurecska, L. Lavagno, and A. Sangiovanni-Vincentelli, “Formal verification of embedded systems based on CFSM networks,” in Proceedings of the Design Automation Conference, 1996.Google Scholar
  5. 5.
    G. Berry, The Constructive Semantics of Esterel, Draft book, preliminary version available from, 1995.Google Scholar
  6. 6.
    G. Berry, “The foundations of Esterel,” in G. Plotkin, C. Stirling, and M. Tofte (Eds.), Proof, Language, and Interaction: Essays in Honour of Robin Milner, MIT Press, 2000.Google Scholar
  7. 7.
    G. Berry and G. Gonthier, “The Esterel synchronous programming language: Design, semantics, implementation,” Science of Computer Programming, Vol. 19, No. 2, pp. 87–152, 1992.Google Scholar
  8. 8.
    J.A. Brzozowski and C.-J. Seger, Asynchronous Circuits, Springer-Verlag, New York, 1995, Monographs in Computer Science.Google Scholar
  9. 9.
    B. Caillaud, P. Caspi, A. Girault, and C. Jard, “Distributing automata for asynchronous networks of processors,” European Journal of Automation (RAIRO-APII-JESA), Vol. 31, No. 3, pp. 503–524, 1997.Google Scholar
  10. 10.
    P. Caspi, A. Girault, and D. Pilaud, “Distributing reactive systems,” in Seventh International Conference on Parallel and Distributed Computing Systems, PDCS'94, Las Vegas, USA, Oct. 1994. ISCA.Google Scholar
  11. 11.
    P. Le Guernic, M. Le Borgne, T. Gauthier, and C. Le Maire, “Programming real-time applications with signal,” Another Look at Real Time Programming, Proceedings of the IEEE, Special Issue, Sept. 1991.Google Scholar
  12. 12.
    N. Halbwachs, Synchronous Programming of Reactive Systems, Kluwer, 1993.Google Scholar
  13. 13.
    N. Halbwachs, P. Caspi, and D. Pilaud, “The synchronous dataflow programming language Lustre,” Another Look at Real Time Programming, Proceedings of the IEEE, Special Issue, Sept. 1991.Google Scholar
  14. 14.
    D. Harel, “Statecharts: A visual approach to complex systems,” Science of Computer Programming, Vol. 8, pp. 231–274, 1987.Google Scholar
  15. 15.
    C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, UK, 1985, International Series in Computer Science.Google Scholar
  16. 16.
    G. Kahn, “The semantics of a simple language for parallel programming,” in Proc. of the IFIP Congress 74, North-Holland Publishing Co., 1974.Google Scholar
  17. 17.
    S. Malik, “Analysis of cyclic combinational circuits,” IEEE Trans. Computer-Aided Design, Vol. 13, No. 7, pp. 950–956, 1994.Google Scholar
  18. 18.
    G. Plotkin, “LCF as a programming language,” Theoretical Computer Science, Vol. 5, No. 3, pp. 223–256, 1977.Google Scholar
  19. 19.
    T. Shiple, “Formal analysis of cyclic circuits,” PhD thesis, U.C. Berkeley, 1996.Google Scholar
  20. 20.
    T. Shiple, G. Berry, and H. Touati, “Constructive analysis of cyclic circuits,” in Proceedings of European Design and Test Conference, March 1996.Google Scholar
  21. 21.
    H. Toma, “Analyse Constructive et Optimisation Séquentielle des Circuits Génerés 'a partir du Langage Synchrone Réactif Esterel,” PhD thesis, Ecole des Mines de Paris, Centre de Mathématiques Appliquées, 1997.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Gérard Berry
    • 1
  • Ellen M. Sentovich
    • 2
  1. 1.Ecole des Mines de Paris and INRIASophia-Antipolis CedexFrance
  2. 2.Cadence Berkeley LaboratoriesBerkeleyUSA

Personalised recommendations