Skip to main content
Log in

Development of New Modifiers for Titanium Alkoxide-Based Sol-Gel Process

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The effects of several hydroxyketones such as acetol, actoin, γ-ketobutanol themselves and their combinations with monoethanolamine (MEA) or ethylenediamine (ED) on the stabilization of titanium tetraisopropoxide (TTIP) in isopropanol solution are examined. Acetoin itself and the imine derivatives of acetol and acetoin were found to show extraordinarily strong stabilizing effect for the alkoxide. The properties including the crystal modifications and refractive index of TiO2 films that were dip-coated using each stabilized solution are examined and discussed in comparison with those of the films obtained from the diethanolamine (DEA) systems. The effect of UV-light irradiation to the gel films on the crystallization of TiO2 is also examined and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.J. Brinker and G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, 1990).

    Google Scholar 

  2. S. Sakka, Zorugeru-Hou-No-Kagaku (Agune-Shofu-Sha, Tokyo, 1988).

    Google Scholar 

  3. A. Kawakatsu, A. Ishizaki, Y. Yuge, T. Watanabe, and N. Saitoh, Shohmei-Gakkai-Shi 69, 537 (1985).

    Google Scholar 

  4. J. Livage, M. Henry, and C. Sanchez, Prog. Solid State Chem. 4, 259 (1988).

    Google Scholar 

  5. J. Livage, M. Henry, J.P. Jolivet, and C. Sanchez, MRS Bullettin, 25 (January 1990).

  6. C. Sanchez, M. In, P. Toledano, and P. Griesmar, Mat. Res. Soc. Symp. Proc. 271, 669 (1992).

    Google Scholar 

  7. L. Delattre and F. Babonneau, Chem. Mater. 9, 2385 (1997).

    Google Scholar 

  8. N. Tohge, K. Shinmou, and T. Minami, J. Sol-Gel Sci. Tech. 2, 581 (1994).

    Google Scholar 

  9. M.J. Percy, J.R. Bartlett, J.L. Woolfrey, L. Spiccia, and B.O. West, J. Mater. Chem. 9, 499 (1999).

    Google Scholar 

  10. G. Guizard, N. Cygankiewicz, A. Larbot, and L. Cot, J. Non-Cryst. Solids 82, 86 (1986).

    Google Scholar 

  11. Y. Takahashi, K. Niwa, K. Kobayashi, and M. Matsuki, Yogyo-Kyokai-Shi 95, 942 (1987).

    Google Scholar 

  12. T. Nishide and F. Mizukami, J. Ceram. Soc. Jpn. 100, 1122 (1992).

    Google Scholar 

  13. Y. Takahashi, Kagaku-Kogyo 39, 482 (1988).

    Google Scholar 

  14. Y. Takahashi, Zorugeru-Hono-Kisoto-Kothingu-Gijutu (Gijutu-Jyoho-Kyokai, Tokyo, 1992), p 93.

    Google Scholar 

  15. Y. Takahashi, H. Hayashi, and Y. Ohya, Mat. Res. Soc. Symp. Proc. 271, 401 (1992).

    Google Scholar 

  16. Y. Takahashi and Y. Wada, J. Electrochem. Soc. 137, 267 (1990).

    Google Scholar 

  17. Y. Takahashi and Y. Matsuoka, J. Mater. Sci. 23, 2259 (1988).

    Google Scholar 

  18. Y. Takahashi and M. Matsuoka, Yoyuen 31, 158 (1988).

    Google Scholar 

  19. U. Ulagaraj, A. Prasadarao, and S. Komarneni, J. Am. Ceram. Soc. 75, 1167 (1992).

    Google Scholar 

  20. Y. Takahashi and H. Naganawa, Yogyo-Kyokai-Shi 95, 1107 (1987).

    Google Scholar 

  21. T. Suzuki, M. Matsuki, Y. Matsuda, K. Kobayashi, and Y. Takahashi, J. Ceram. Soc. Jpn. 98, 754 (1990).

    Google Scholar 

  22. Y. Ohya, Y. Ogawa, R. Ito, J. Oguri, T. Ban, S. Demachi, and Y. Takahashi, Trans. Mater. Res. Soc. Jpn. 20, 632 (1996).

    Google Scholar 

  23. Y. Ohya, H. Saiki, and Y. Takahashi, J. Mater. Sci. 29, 4099 (1994).

    Google Scholar 

  24. Y. Takahashi, S. Okada, R. Bel Hadj Tahar, K. Nakano, T. Ban, and Y. Ohya, J. Non-Cryst. Solids 218, 129 (1997).

    Google Scholar 

  25. Y. Takahashi and K. Yamaguchi, J. Mater. Sci. 25, 3950 (1990).

    Google Scholar 

  26. V.W. Hieber and E. Levy, Z. Anorg. Allg. Chem. 219, 225 (1934).

    Google Scholar 

  27. D.C. Bradley, R.C. Mehrotra, and G.P. Gaur, Metal Alkoxides (Academic Press, New York, 1978).

    Google Scholar 

  28. W.M.P.B. Menge and J.G. Verkade, Inorg. Chem. 30, 4628 (1991).

    Google Scholar 

  29. F. Basolo and R.G. Pearson, Mechanisms of Inorganic Reactions (John Wiley & Sons, Inc., New York, 1958).

    Google Scholar 

  30. T. Yoko, K. Kamiya, and S. Sakka, J. Ceram. Soc. Jpn. 95, 150 (1987).

    Google Scholar 

  31. K. Kikuta and S. Hirano, Abstracts of 35th Symposium on the Basic Science of Ceramics (Ceramic Society of Japan, 1997, p. 74.

  32. H.A. Flaschka and A.G. Bernard, Jr., Chelates in Analytical Chemistry (Marcel Dekker Pub., New York, 1967).

    Google Scholar 

  33. K.J.D. MacKenzie, Trans. J. Brit. Ceram. Soc. 74, 121 (1975).

    Google Scholar 

  34. R.D. Shannon and J.A. Pask, J. Am. Ceram. Soc. 48, 391 (1965).

    Google Scholar 

  35. Y. Takahashi, Y. Matsuoka, K. Yamaguchi, M. Matsui, and K. Kobayashi, J. Mater. Sci. 25, 3960 (1990).

    Google Scholar 

  36. R. Bel Hadj Tahar, T. Ban, Y. Ohya, and Y. Takahashi, J. Am. Ceram. Soc. submitted.

  37. D. Sutton, Electronic Spectra of Transition Metal Complexes (McGraw-Hill, London, 1968).

    Google Scholar 

  38. J. Klaas, G. Schultz-Ekloff, and N. I. Jaeger, J. Phys. Chem. B 101, 1305 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, Y., Ohsugi, A., Arafuka, T. et al. Development of New Modifiers for Titanium Alkoxide-Based Sol-Gel Process. Journal of Sol-Gel Science and Technology 17, 227–238 (2000). https://doi.org/10.1023/A:1008716122654

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008716122654

Navigation