Skip to main content
Log in

Pharmacological inhibition of leukotriene actions.

  • Published:
Pharmacy World and Science Aims and scope Submit manuscript

Abstract

Leukotrienes represent a group of lipid mediators that play a very important role in a wide variety of pathological conditions. The presence of leukotrienes in inflammatory sites has been extensively documented, and accordingly research efforts have been directed towards the development of drugs that interfere with the formation or effects of leukotrienes. Although clinical application of such drugs has been disappointing in the past, recent discoveries of more potent and selective drugs seem to be promising. This review attempts to highlight some of these exciting developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feldberg W, Kellaway CH. Liberation of histamine and formation of lysocithin-like substances by cobra venom. J Physiol 1938;94: 187–226.

    Google Scholar 

  2. Kellaway CH, Trethewie ER. The liberation of a slow reacting smooth muscle-stimulating substance in anaphylaxis. QJ Exp Physiol 1940;30: 121–45.

    Google Scholar 

  3. Murphy RC, Hammarstrom S, Samuelsson B. Leukotriene C: a slow-reacting substance from murine mastocytoma cells. Proc Natl Acad Sci USA 1979;76: 4275–9.

    PubMed  Google Scholar 

  4. Denzlinger C. Biology and pathophysiology of leukotrienes. Crit Rev Oncol Hematol 1996;23: 167–223.

    PubMed  Google Scholar 

  5. Ford-Hutchinson AW, Gresser M, Young RN. 5-Lipoxygenase. Ann Rev Biochem 1994;63: 383–417.

    Article  PubMed  Google Scholar 

  6. Nagy L, Lee TH, Goetzl EJ, Pickett WC, Kay AB. Complement receptor enhancement and chemotaxis of human neutrophils and eosinophils by leukotrienes and other lipoxygenase products. Clin Exp Immunol 1982;47: 541–7.

    PubMed  Google Scholar 

  7. Hoover RL, Karnovsky ML, Austen KF, Corey EJ, Lewis RA. Leukotriene B4 action on endothelium mediates augmented neutrophil endothelial adhesion. Proc Natl Acad Sci USA 1984;81: 2191–3.

    PubMed  Google Scholar 

  8. Barnes NC, Piper PJ, Costello JF. Comparative effects of inhaled leukotriene C4, leukotriene D4, and histamine in normal human subjects. Thorax 1984;39: 500–4.

    PubMed  Google Scholar 

  9. O'Hickey SP, Hawksworth RJ, Fong CY, Arm JP, Spur BW, Lee TH. Leukotrienes C4, D4, and E4 enhance histamine responsiveness in asthmatic airways. Am Rev Respir Dis 1991;144: 1053–7.

    Google Scholar 

  10. McIntyre TM, Zimmerman GA, Prescott SM. Leukotrienes C4 and D4 stimulate human endothelial cells to synthesize platelet-activating factor and bind neutrophils. Proc Natl Acad Sci USA 1986;83: 2204–8.

    PubMed  Google Scholar 

  11. Joris I, Majno G, Corey EJ, Lewis RA. The mechanism of vascular leakage induced by leukotriene E4. Am J Pathol 1987;126: 19–24.

    PubMed  Google Scholar 

  12. Dahlén SE, Bjork J, Hedqvist P. Leukotrienes promote plasma leakage and leukocyte adhesion in post capillary venules: in vivo effects with relevance to the acute inflammatory response. Proc Natl Acad Sci USA 1981;78: 3887–91.

    PubMed  Google Scholar 

  13. Marom Z, Shelhamer JH, Bach MK, Morton DR, Kaliner M. Slow-reaction substances, leukotrienes C4 and D4, increase the release of mucus from human airways in vitro. Am Rev Respir Dis 1982;126: 449–51.

    PubMed  Google Scholar 

  14. Laitinen LA, Laitinen A, Haahtela T, Vilkka V, Spur BW, Lee TH. Leukotriene E4 and granulocytic infiltration into asthmatic airways. Lancet 1993;341: 989–90.

    Article  PubMed  Google Scholar 

  15. Hirata F, Schiffmann E, Venkatasubramanian K, Salomon D, Axelrod J. A phospholipase A2 inhibitory protein in rabbit neutrophils induced by glucocorticoids. Proc Natl Acad Sci USA 1980;77: 2533–6.

    PubMed  Google Scholar 

  16. Chung KF, Wiggins J, Collins J. Corticosteroids. In: Weiss EB, Stein M, eds. Bronchial Asthma. Mechanisms and Therapeutics. Boston: Little, Brown and Company, 1993: 800–17.

    Google Scholar 

  17. Tibes U, Vondran A, Rodewald E, Friebe W-G, Schäfer W, Scheuer W. Inhibition of allergic and non-allergic inflammation by phospholipase A2 inhibitors. Int Arch Allergy Immunol 1995;107: 432–4.

    PubMed  Google Scholar 

  18. Glaser KB and Jacobs RS. Molecular pharmacology of manoalide: inactivation of bee venom phospholipase A2. Biochem Pharmacol 1986;35: 449–53.

    Article  PubMed  Google Scholar 

  19. Cimino G, DeStefano S, Minale L. Scalaradial, a third sesterterpene with the tetracarbocyclic skeleton of scalarin, from the sponge Cacospongia mollior. Experientia 1974;30: 846–7.

    Google Scholar 

  20. Gil B, Sanz MJ, Terencio MC, Gunasegaran R, Payá M, Alcaraz MJ. Morelloflavone, a novel biflavonoid inhibitor of human secretory phospholipase A2 with anti-inflammatory activity. Biochem Pharmacol 1997;53: 733–40.

    Article  PubMed  Google Scholar 

  21. Yoshida T, Nakamoto S, Sakazaki R, Matsumoto K, Terui Y, Sato T, Arita H, Matsutani S, Inoue K, Kudo I. Thielocins A1α and A1β, novel phospholipase A2 inhibitors from ascomycetes. J Antibiot 1991;44:1467–70.

    PubMed  Google Scholar 

  22. McMillan RM, Girodeau JM, Foster SJ. Selective chiral inhibitors of 5-lipoxygenase with anti-inflammatory activity. Br J Pharmacol 1990;101: 501–3.

    PubMed  Google Scholar 

  23. Hui KP, Taylor IK, Taylor GW, Rubin P, Kesterson J, Barnes NC. Effect of a 5-lipoxygenase inhibitor on leukotriene generation and airway responses after allergen challenge in asthmatic patients. Thorax 1991;46: 184–9.

    PubMed  Google Scholar 

  24. Israel E, Dermarkarian R, Rosenberg M, Sperling R, Taylor G, Rubin P, Drazen JM. The effects of a 5-lipoxygenase inhibitor on asthma induced by cold, dry air. The New Engl J Med 1990;323: 1740–4.

    Google Scholar 

  25. Israel E, Fischer AR, Rosenberg MA, Lilly CM, Callery JC, Shapiro J, Cohn J, Rubin P, Drazen JM. The pivotal role of 5-lipoxygenase products in the reaction of aspirin-sensitive asthmatics to aspirin. Am Rev Respir Dis 1993;148: 1447–51.

    PubMed  Google Scholar 

  26. Meltzer SS, Hasday JD, Cohn J, Bleecker ER. Inhibition of exercise-induced bronchospasm by zileuton: a 5-lipoxygenase inhibitor. Am J Respir Crit Care Med. 1996;153: 931–5.

    PubMed  Google Scholar 

  27. Israel E, Rubin P, Kemp JP, Grossman J, Pierson W, Siegel SC, Tinkelman D, Murray JJ, Busse W, Segal AT, Fish J, Kaiser HB, Ledford D, Wenzel S, Rosenthal R, Cohn J, Lanni C, Pearlman H, Karahalios P, Drazen JM. The effect of inhibition of 5-lipoxygenase by zileuton in mild-to-moderate asthma. Ann Intern Med 1993;119: 1059–66.

    PubMed  Google Scholar 

  28. Israel E, Cohn J, Dubé L, Drazen JM. Effect of treatment with zileuton, a 5-lipoxygenase inhibitor, in patients with asthma. A randomized controlled trial. J Am Med Assoc 1996;275: 931–6.

    Article  Google Scholar 

  29. Liu MC, Dubé LM, Lancaster J, Zileuton Study Group. Acute and chronic effects of a 5-lipoxygenase inhibitor in asthma: a 6-month randomized multicenter trial. J Allergy Clin Immunol 1996;98: 859–71.

    PubMed  Google Scholar 

  30. Knapp HR. Reduced allergen-induced nasal congestion and leukotriene synthesis with an orally active 5-lipoxygenase inhibitor. The New Engl J Med 1990;323: 1745–8.

    Google Scholar 

  31. Weinblatt ME, Kremer JM, Coblyn JS, Helfgott S, Maier AL, Petrillo G, Henson B, Rubin P, Sperling R. Zileuton, a 5-lipoxygenase inhibitor in rheumatoid arthritis. J Rheumatol 1992;19: 1537–41.

    PubMed  Google Scholar 

  32. Collawn C, Rubin P, Pérez N, Reyes E, Bobadilla J, Cabrera G, Morán MA, Kershenobich D. Experimental use of a 5-lipoxygenase inhibitor (Abbott-64077) in human ulcerative colitis (UC). Am J Gastroenterol 1989;84: 1178.

    Google Scholar 

  33. Bukhave K, Laursen LS, Lauritsen K, Rask-Madsen J, Naesdal J, Jacobson O, Goebell H, Peskar B, Cort D, Stenson W, Hanauer S. 5-Lipoxygenase inhibition in double-blind trial with zileuton: how much is sufficient in active ulcerative colitis? Gastroenterology 1991;100: A200.

    Google Scholar 

  34. FDA gives year-end okays to a baker's dozen new drugs. Physician's Weekly (1997) Vol. XIV, No. 5.

  35. Crawley GC, Dowell RI, Edwards PN, Foster SJ, McMillan RM, Walker ER, Waterson D, Bird TG, Bruneau P, Giroaeau JM. Methoxytetrahydropyrans. A new series of selective and orally potent 5-lipoxygenase inhibitors. J Med Chem 1992;35: 2500–9.

    Google Scholar 

  36. Nasser SM, Bell GS, Foster S, Spruce K, MacMillan R, Williams AJ, Arm JP, Lee TH. Effect of ZD2138 in aspirin-induced asthma and on the allergen-induced early and late asthmatic responses. J Allergy Clin Immunol 1994;93: 680.

    Google Scholar 

  37. Nasse SM, Bell GS, Hawksworth RJ, Spruce KE, MacMillan R, Williams AJ, Lee TH, Arm PJ. Effect of the 5-lipoxygenase inhibitor ZD2138 on allergen-induced early and late asthmatic responses. Thorax 1994;49: 743–8.

    PubMed  Google Scholar 

  38. Friedman BS, Bel EH, Buntinx A, Tanaka W, Han YH, Shingo S, Spector R, Sterk P. Oral leukotriene inhibitor (MK-886) blocks allergen-induced airway responses. Am Rev Respir Dis 1993;147: 839–44.

    PubMed  Google Scholar 

  39. Diamant Z, Timmers MC, Van der Veen H. The effect of MK-0591, a noval 5-lipoxygenase activating protein (FLAP) inhibitor, on leukotriene biosynthesis and allergen-induced airway responses in asthmatic subjects in vivo. J Allergy Clin Immunol 1995;95: 42–51.

    PubMed  Google Scholar 

  40. Dahlén SE, Dahlén B, Ihre E, Kumlin M, Franzén L, Stensvad F, Larsson C, Blomqvist H, Björck T, Zetterström O. The leukotriene biosynthesis inhibitor BAY x1005 is a potent inhibitor of allergen-induced airway obstruction and leukotriene formation in man. Am Rev Respir Dis 1993;147: A837.

    Google Scholar 

  41. Ford-Hutchinson AW. 5-Lipoxygenase activating protein and leukotriene C4 synthase: therapeutic targets for inhibiting the leukotriene cascade. Adv Prostagl Thrombox Leukotr Res 1994;22: 13–21.

    Google Scholar 

  42. Haeggström JZ, Wetterholm A, Medina JF, Samuelsson B. Novel structural and functional properties of leukotriene A4 hydrolase. Implications for the development of enzyme inhibitors. Adv Prostagl Thrombox Leukotr Res 1994;22: 3–12.

    Google Scholar 

  43. Coleman RA, Eglen RM, Jones RL, Narumiya S, Shimizu T, Smith WL, Dahlén SE, Drazen JM, Gardiner PJ, Jackson WT, Jones TR, Krell RD, Nicosia S. Prostanoid and leukotriene receptors: a progress report from the IUPHAR working parties on classification and nomenclature. Adv Prostagl Thrombox Leukotr Res 1995;23: 283–5.

    Google Scholar 

  44. Fretland DJ, Widomski D, Tsai B-S, Zemaitis JM, Levin S, Djuric SW, Shone RL, Gaginella TS. Effect of the leukotriene B4 receptor antagonist SC-41930 on colonic inflammation in rat, guinea pig and rabbit. J Pharmacol Exp Ther 1990;255: 572–6.

    PubMed  Google Scholar 

  45. Sutbeyaz Y, Yakan B, Ozdemir H, Karasen M, Doner F, Kufrevioglu I. Effect of SC-41930, a potent selective leukotriene B4 receptor antagonist, in the guinea pig model of middle ear inflammation. Ann Otol Rhinol Laryngol 1996;105:476–80.

    PubMed  Google Scholar 

  46. Wollert PS, Menconi MJ, O'Sullivan BP, Wang H, Larkin V, Fink MP. LY255283, a novel leukotriene B4 receptor antagonist, limits activation of neutrophils and prevents acute lung injury induced by endotoxin in pigs. Surgery 1993;114: 191–8.

    PubMed  Google Scholar 

  47. Daines RA, Chambers PA, Eggleston DS, Foley JJ, Griswold DE, Haltiwanger RC, Jakas DR, Kingsbury WD, Martin LD, Pendrak I, Schmidt DB, Tzimas MN, Sarau HM. (E)-3-[[[[6-(2-carboxyethenyl)-5-[[8-(4-methoxyphenyl)octyl]oxy]-2-pyridinyl]-methyl]thio]methyl]benzoic acid and related compounds: high affinity leukotriene B4 receptor antagonists. Med Chem 1994;37: 3327–36.

    Google Scholar 

  48. Turner CR, Breslow R, Conklyn MJ, Andresen CJ, Patterson DK, Lopez-Anaya A, Owens B, Lee P, Watson JW, Showell HJ. In vitro and in vivo effects of leukotriene B4 antagonism in a primate model of asthma. J Clin Invest 1996;97: 381–7.

    PubMed  Google Scholar 

  49. Fitzsimmons BJ and Rokach J. Enzyme inhibitors and leukotriene receptor antagonists. In: Rokach J, ed. Leukotrienes and lipoxygenases. Chemical, biological and clinical Aspects. Amsterdam: Elsevier Science Publishers: 1989: 427–502.

    Google Scholar 

  50. Smith LJ, Geller S, Ebright L, Glasse M, Thyrum PT. Inhibition of leukotriene D4 induced bronchoconstriction in normal subjects by the oral LTD4 receptor antagonist ICI 204,219. Am Rev Respir Dis 1990;141: 988–92.

    PubMed  Google Scholar 

  51. Kips JC, Joos GF, De Lepeleire I, Margolskee DJ, Buntinx A, Pauwels RA, Van der Straeten ME. MK-571, a potent antagonist of LTD4-induced bronchoconstriction in the human. Am Rev Respir Dis 1991;144: 617–21.

    PubMed  Google Scholar 

  52. Taylor IK, O'Shaughnessy KM, Fuller RM, Dollery CT. Effect of cysteinyl-leukotriene receptor antagonist ICI 204,219 on allergen-induced bronchoconstriction and airway hyperreactivity in atopic subjects. Lancet 1991;337: 691–4.

    Google Scholar 

  53. Findlay SR, Barden JM, Easley CB, Glass M. Effect of the oral leukotriene antagonist ICI 204,219 on the antigen-induced bronchoconstriction in subjects with asthma. J Allergy Clin Immunol 1992;89: 1040–5.

    PubMed  Google Scholar 

  54. Rasmussen JB, Eriksson LO, Margolskee DJ, Tagari P, Williams VC, Andersson KE. Leukotriene D4 receptor blockade inhibits the immediate and late bronchoconstrictor responses to inhaled antigen in patients with asthma. J Allergy Clin Immunol 1992;90: 193–201.

    PubMed  Google Scholar 

  55. Manning PJ, Watson RM, Margolskee DJ, Williams VC, Schwartz JJ. Inhibition of exercise-induced bronchoconstriction by MK-571, a potent leukotriene D4 receptor antagonist. The New Engl J Med 1990;323: 1736–9.

    Google Scholar 

  56. Makker HK, Lau LC, Thomson HW, Binks SM, Holgate ST. The protective effect of inhaled leukotriene D4 receptor antagonist ICI 204,219 against exercise-induced asthma. Am Rev Respir Dis 1993;147: 1413–8.

    PubMed  Google Scholar 

  57. Robuschi M, Riva E, Fuccella LM, Vida E, Barnabe R, Rossi M, Gambaro G, Spagnotto S, Bianco S. Prevention of exercise-induced bronchoconstriction by a new leukotriene antagonist (SK&F 104353). A double-blind study versus disodium cromoglycate and placebo. Am Rev Respir Dis 1992;145: 1285–8.

    PubMed  Google Scholar 

  58. Donnelly AL, Glass M, Minkwitz MC, Casale TB. The leukotriene D4-receptor antagonist, ICI 204,219, relieves symptoms of acute seasonal allergic rhinitis. Am J Respir Crit Care Med 1995;151: 1734–9.

    PubMed  Google Scholar 

  59. Christie PE, Smith CM, Lee TH. The potent and selective sulfidopeptide leukotriene antagonist, SK&F 104,353, inhibits aspirin-induced asthma. Am Rev Respir Dis 1991;144: 957–8.

    PubMed  Google Scholar 

  60. Dahlén B, Kumlin M, Margolskee DJ, Larsson C, Blomqvist H, Williams VC, Zetterstrom O, Dahlén SE. The leukotriene receptor antagonist MK-0679 blocks the airway obstruction induced by inhaled lysine-aspirin in aspirin-sensitive asthmatics. Eur Respir J 1993;6: 1018–26.

    PubMed  Google Scholar 

  61. Reiss TF, Sorkness CA, Stricker W, Botto A, Busse WW, Kundu S, Zhang J. Effects of montelukast (MKM-0476), a potent cysteinyl leukotriene receptor antagonist, on bronchodilatation in asthmatic subjects treated with and without inhaled corticosteroids. Thorax 1997;52: 45–8.

    PubMed  Google Scholar 

  62. Bel H, Timmers MC, Dijkman JH, Stahl EG, Sterk PJ. The effect of an inhaled leukotriene antagonist, L-648,051, on early and late asthmatic reactions and subsequent increase in airway responsiveness in man. J Allergy Clin Immunol 1990;85: 1067–75.

    PubMed  Google Scholar 

  63. Fujimura M, Sakamoto S, Kamio Y, Matsuda T. Effect of a leukotriene antagonist. ONO-1078, on bronchial hyperresponsiveness in patients with asthma. Resp Med 1993;87: 133–8.

    Article  Google Scholar 

  64. Cheria-Sammari S, Aloui R, Gormand F, Chabannes B, Gallet H, Hrosclaude M, Melac M, Rihoux JP, Perrin-Fayolle M, Lagarde M, Pacheco Y. Leukotriene B4 production by blood neutrophils in allergic rhinitis-effects of cetirizine. Clin Exp Allergy 1995;25: 729–36.

    PubMed  Google Scholar 

  65. Kalayci O, Saraclar Y, Adalioglu G, Sekerel B, Tuncer A. The effect of cetirizine on sulfidoleukotriene production by blood leukocytes in children with allergic rhinitis. Allergy 1995;50: 964–9.

    PubMed  Google Scholar 

  66. Dobashi K, Iizuka K, Houjou S, Sakai H, Watanabe K, Mori M, Nakazawa T. Effect of cetirizine on antigen-induced tracheal contraction of passively sensitized guinea pigs. Ann Allergy Asthma Immunol 1996;77: 310–8.

    PubMed  Google Scholar 

  67. Campbell A, Michel F-B, Bremard-Oury C, Crampette L, Bousquet J. Overview of allergic mechanisms. Ebastine has more than antihistamine effect. Drugs 1996;52: 15–9.

    PubMed  Google Scholar 

  68. Hamasaki Y, Shafigeh M, Yamamoto S, Sato R, Zaitu M, Muro E, Kobayashi I, Ichimaru T, Tasaki H, Miyazaki S. Inhibition of leukotriene synthesis by azelastine. Ann Allergy Asthma Immunol 1996;76: 69–75.

    Google Scholar 

  69. Fresh Breath. First leukotriene antagonist is okayed. Physician's Weekly (1996);Vol. XIII, No. 41.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engels, F., Nijkamp, F. Pharmacological inhibition of leukotriene actions.. Pharm World Sci 20, 60–65 (1998). https://doi.org/10.1023/A:1008698027211

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008698027211

Navigation