Skip to main content
Log in

Structure of CdS/SiO2 Nanocomposites: Influence of the Precursor and Cd Concentration

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The influence of using TMOS or TEOS in the formation of CdS quantum dots in a silica matrix have been studied by X-ray absorption spectroscopy (XAS). The amount of Cd-S bonds have been monitored as a function of the nominal Cd concentration. The relative amount of CdS crystals depends on the precursor. The use of TEOS is not recommended because it gives a poor yield, especially for high Cd concentration. A discussion of the influence of CdS concentration in matrices from TMOS is carried out from structural models created from their pore volume distribution. The mean pore size becomes smaller and the size distribution more uniform when CdS concentration increases but the nanocrystals of low CdS nominal content present a more efficient quantum confinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.K. Jain and R.C. Lind, J. Opt. Soc. Am. 73, 647 (1983).

    Google Scholar 

  2. E.J.A. Pope and J. Mackenzie, Mater. Res. Soc. Bull. 17, 29 (1987).

    Google Scholar 

  3. R. Litrán, E. Blanco, M. Ramírez-del-Solar, A. Hierro, M.A. Díaz-García, A. García-Cabañanes, and F. Agulló-López, Synth. Metals 83, 173 (1996).

    Google Scholar 

  4. N. Nogami and K. Nagasaka, J. Non-Cryst. Solids 122, 101 (1990).

    Google Scholar 

  5. M. Piñero, R. Litrán, C. Fernández-Lorenzo, E. Blanco, M. Ramírez-del-Solar, N. de la Rosa-Fox, L. Esquivias, A. Craievich, and J. Zarzycki, J. Sol-Gel Sci. Tech. 2, 689 (1994).

    Google Scholar 

  6. N. Toghe, M. Asuka, and T. Minami, J. Non-Cryst. Solids 147/148, 631(1992).

    Google Scholar 

  7. M. Guglielmi, A. Martucci, G.C. Righini, and S. Pelli, SPIE, Sol-Gel Optics III 1188, 174 (1994).

    Google Scholar 

  8. T. Rajh, M.I. Vucemilovic, N.M. Dimitrijevic, O.I. Micic, and A.J. Nozik, Chem. Phys. Lett. 143(3), 305 (1988).

    Google Scholar 

  9. L. Spanhel, E. Arpac, and H. Schmidt, J. Non-Cryst. Solids 147/148, 657 (1992).

    Google Scholar 

  10. H. Schmidt, J. Sol-Gel Sci. Tech. 1(3), 217 (1994).

    Google Scholar 

  11. L. Spanhel, H. Schmidt, A. Uhrig, and C. Klingshrirn, Mat. Res. Soc. Symp. Proc. 272, 53 (1992).

    Google Scholar 

  12. M. Menning and H. Schmidt, J. Sol-Gel Sci. Tech. 8, 1035 (1997).

    Google Scholar 

  13. N. Tohge, M. Asuka, and T. Minami, SPIE Proc., Sol-Gel Optics I 1328, 125 (1990).

    Google Scholar 

  14. M. Nogami and K. Nagasaka, J. Non-Cryst. Solids 147/148, 331 (1992).

    Google Scholar 

  15. T. Gacoin, C. Train, F. Chaput, J.P. Boilot, P. Aubert, M. Gandais, Y. Wang, and A. Lecomte, SPIE Proc., Sol-Gel Optics II 1758, 565 (1992).

    Google Scholar 

  16. M. Nogami and K. Nagasaka, J. Non-Cryst. Solids 163, 242 (1993).

    Google Scholar 

  17. C.H. Sing, Y. Xu, J.D. Mackenzie, J. Chee, and J.M. Liu, SPIE Proc., Sol-Gel Optics II 1758, 485 (1992).

    Google Scholar 

  18. M. Tarasevich, Cer. Bull. 63, 500 (1984) (Abstract only).

    Google Scholar 

  19. J. Zarzycki, Heterogeneous Chemistry Reviews 1, 243 (1994).

    Google Scholar 

  20. N. de la Rosa-Fox, L. Esquivias, and J. Zarzycki, Diffusion and Defect Data 53–;54, 363 (1987).

    Google Scholar 

  21. N. de la Rosa-Fox, L. Esquivias, and J. Zarzycki, Rev. Phys. Appliquée 24, C4–;223 (1989).

    Google Scholar 

  22. M. Ramírez del Solar, N. de la Rosa-Fox, L. Esquivias, and J. Zarzycki, J. Non-Cryst. Solids 121, 84 (1990).

    Google Scholar 

  23. N. de la Rosa-Fox, L. Esquivias, and J. Zarzycki, J. Non-Cryst. Solids 121, 84 (1990).

    Google Scholar 

  24. M. Ramírez-del-Solar, N. de la Rosa-Fox, L. Esquivias, and J. Zarzycki, J. Non-Cryst. Solids 121, 40, (1990).

    Google Scholar 

  25. N. de la Rosa-Fox, L. Esquivias, and J. Zarzycki, J. Mat. Sci. Lett. 10, 1237 (1991).

    Google Scholar 

  26. E. Blanco, N. de la Rosa-Fox, L. Esquivias, and A. Craievich, J. Non-Cryst. Solids 147/148, 296 (1992).

    Google Scholar 

  27. J. Zarzycki, in Ultrastructure Processing of Advanced Materials, Sonogels-Development and perpectives, edited by D.R. Ulhmann and D.R. Ulrich (Wiley, NY, 1992), p. 135.

    Google Scholar 

  28. C. Bagnall and J. Zarzycki, SPIE Proc., Sol-Gel Optics I 1328, 108 (1990).

    Google Scholar 

  29. T. Murakata, S. Sato, T. Ohgawara, T. Watanabe, and T. Suzuki, J. Mat. Sci. 27, 1567 (1992).

    Google Scholar 

  30. M. Yamane, T. Takada, J.D. Mackenzie, and Ch. Li, SPIE Sol-Gel Optics II 1758, 577 (1992).

    Google Scholar 

  31. R. Litrán, R. Alcántara, E. Blanco, and M. Ramírez-del-Solar, J. Sol-Gel Sci. Tech. 8, 275 (1997).

    Google Scholar 

  32. J. Rodríguez-Ortega and L. Esquivias, J. Sol-Gel Sci. Tech. 8, (1997).

  33. J. Zarzycki, in Chemical Processing of Advanced Materials, edited by L.L. Hench and J.K. West (John Wiley & Sons, New York, 1992), p. 84.

    Google Scholar 

  34. J. Zarzycki, J. Non-Cryst. Solids 147/148, 176 (1992).

    Google Scholar 

  35. G. Horvath and K. Kawazoe, J. Chem. Eng. of Japan 16(6), 470 (1983).

    Google Scholar 

  36. E.P. Baret, L.G. Joyner, and P.P. Halenda, J. Am. Chem. Soc. 73, 373 (1951).

    Google Scholar 

  37. C. Prieto, P. Lagarde, H. Dexpert, V. Briois, F. Villain, and M. Verdaguer, Meas. Sci. Tech. 3, 325 (1992).

    Google Scholar 

  38. K. Teo, Inorganic Chemistry Concepts 9 (Springer Verlag, Berlin, 1986).

    Google Scholar 

  39. A.G. Mckale, B.W. Veal, A.P. Paulikas, S.K. Chan, and G.S. Knapp, J. Am. Chem. Soc. 110, 3763 (1986).

    Google Scholar 

  40. J.J. Rehr, J. Mustre de Leon, S.I. Zabinsky, and R.C. Albers, J. Am. Chem. Soc. 113, 751 (1976).

    Google Scholar 

  41. R.D. Shannon, Acta Crystallogr. A 32, 751 (1976).

    Google Scholar 

  42. H. Frost, ONR Technical Report No. 6 (Division of Applied Sciences, Harvard Univ., Cambridge, MA, 1978).

  43. J.D. Bernal and S.V. King, Discuss. Faraday Soc. 43, 60 (1967).

    Google Scholar 

  44. J.L. Finney and J. Wallace, J. Non-Cryst. Solids 43, 165 (1981).

    Google Scholar 

  45. U.C. Sritava and H.L. Nigam, Coord. Chem. Rev. 9, 275 (1973).

    Google Scholar 

  46. J.C.J. Bart, Adv. Catal. 34, 203 (1986).

    Google Scholar 

  47. Swanson and Fuyat, NBS Circular 539, 3, 27 (1953).

  48. Osugi et al., Rev. Phys. Chem. Japan 36, 59 (1966).

    Google Scholar 

  49. K.S.W. Sing et al., Pure and Appl. Chem. 57(4), 503 (1985).

    Google Scholar 

  50. N. de la Rosa-Fox and A. Craievich, to be published.

  51. E.P. Barret, L.G. Joyner, and P.P. Halenda, J. Amer. Chemistry Soc. 73, 373 (1951).

    Google Scholar 

  52. This experiment was carried out at the Optical Science Center (Prof. Peyghambarian Group), University of Arizona, Tucson, AZ, USA.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esquivias, L., Litrán, R., Rodríguez-Ortega, J. et al. Structure of CdS/SiO2 Nanocomposites: Influence of the Precursor and Cd Concentration. Journal of Sol-Gel Science and Technology 11, 217–227 (1998). https://doi.org/10.1023/A:1008615710931

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008615710931

Navigation