Artificial Intelligence and Law

, Volume 5, Issue 3, pp 179–205 | Cite as

A Knowledge Engineering Framework for Intelligent Retrieval of Legal Case Studies

  • Adel Saadoun
  • Jean-Louis Ermine
  • Claude Belair
  • Jean-Mark Pouyot
Article

Abstract

Juris-Data is one of the largest case-study base in France. The case studies are indexed by legal classification elaborated by the Juris-Data Group. Knowledge engineering was used to design an intelligent interface for information retrieval based on this classification. The aim of the system is to help users find the case-study which is the most relevant to their own.

The approach is potentially very useful, but for standardising it for other legal document bases it is necessary to extract a legal classification of the primary documents. Thus, a methodology for the construction of these classifications was designed together with a framework for index construction. The project led to the implementation of a Legal Case Studies Engineering Framework based on the accumulated experimentation and the methodologies designed. It consists of a set of computerised tools which support the life-cycle of the legal document from their processing by legal experts to their consultation by clients.

legal databases information retrieval artificial intelligence knowledge engineering document base 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alkhadtib, B., Bergeon, B., Ermine, J.-L., Falinower, C:M. & Monsion, M. (1994). Génie logiciel el génie cognitive pour l'élaboration d'une base de connaissances en automatique. In 9ième Congrès Reconnaissance des Formes et Intelligence Artificielle, RFIA '94, Paris 11–14 Janvier 1994, Vol. 2, pp. 734–738. Paris.Google Scholar
  2. Andreewsky, A., Binquet, Debili, F., Fluhr, C. & Ponderoux (1983). L'interrogation en langage nature1 dans le système SPIRIT. Journées Internationales de l'Informatique el de I'Automatisme, 322–332.Google Scholar
  3. Andreewsky, A., Debili, F. & Fluhr, C. (1983). Apprentissage-syntax-séantique lexicale, Revue du Palais de la Découverte 9(83).Google Scholar
  4. Barakat, B. B. (1992). Vers uno construction automatique de graphes de concepts, Thèse de Doctorat de I'Ecole Centrale.Google Scholar
  5. Benzécri, J.P. (1980). L'analyse des Données, Tome I: Lu Taxinomie. Editions Dunod.Google Scholar
  6. Bourcier, D. (1991). Méthodes pour une approche cognitive du droit. In Vergnaud, B. (ed.), Les Sciences Cognitives en Débat. CNRS Editions.Google Scholar
  7. Bourigault, D. (1992). Lexter, vers un outils linguistique d'aide à l'acquisition des connaissances. 3èmes Journées d'Acquisition des Connaissances du PRC-IA, Dourdan, Avril, 1992.Google Scholar
  8. Brunet, E & Ermine, J-L. (1994) Problématique de la gestion des connaissances des organisations. Ingénierie des Systèmes d'lnformation 2(3): 263–291.Google Scholar
  9. Charreton, B. & Ermine, J.-L. (1996). From knowledge specification to executable specification. Knowledge Engineering and Modelling Languages, KEML'96, Paris, 15–16 JanuaryGoogle Scholar
  10. David. S. & Plante. P. (1990). De la nècessite d'une approche morpho-syntaxique en analyse de texte 25 pages, Rapport Interne UQAM, Québec.Google Scholar
  11. Ermine, J-L. (1989). Systèmes Experts, Théorie et Pratique, Collection Tec et Doc. Paris: Lavoisier Ed.Google Scholar
  12. Ermine, J.-L. 11993). Génie Logiciel et Génie Cognitif pour les Systémes à Base de Connaissances, Collection Tec et Doc. Paris: Lavoisier Ed.Google Scholar
  13. Greimas, A.-J. (1966). Sémantique Structurale. Paris: Larousse (repris chez P.U.F. Paris, 1986).Google Scholar
  14. Hickman, F.R., Killin, J., Land, L., Mulhall, T., Porter, D. & Taylor, R.M. (1989). Analysis for Knowledge Based Systems, a Practical Guide to the KADS Methodology. Ellis Horwood.Google Scholar
  15. IGL Technology (1989). SADT un Langage pour Communiquer. Editions Eyrolles.Google Scholar
  16. Maranda, P. & Nze-Nguema, F,-P. (1994). L'Unité dans la Diversité Culturelle. Sainte Foy, Quebec: Les Presses de 1'Université Laval.Google Scholar
  17. Michalski, R.S., Carbonell, J.G. & Mitchell, TM. (eds.) (1983). A theory and methodology of inductive learning. Machine Lraming: An Artificial Intelligence Approach, pp 83–129. Tyoga.Google Scholar
  18. Salton, G (1972) A new comparison between conventional indexing (MEDLARS) and automatic text processing (SMART). Journal of the American Society for Inf. Sci. 23(2): 75–84.Google Scholar
  19. Scapin, D. & Pierret-Golbreich. C. (1990). Towards a method for task description: MAD. In Berlinguet, L. & Berthelett, D. (eds.), Work with Display Units 89. Amsterdam: Elsevier Science, North Holland Puublishers.Google Scholar
  20. Skalak, D.B. (1989). Taking advantage of models for legal classification. In Second International Conference on Artificial Intelligence and Law, pp. 234–241. New York: ACM.Google Scholar
  21. SPIRIT of SYSTEX-The Linguistic Skill. (1992). Rapport interne SYSTEX, Bâtiment Appolo, Espace Technologique, 91 195 Saint-Aubin Cédex, France, 2 pages.Google Scholar
  22. Vogel, C. (1988). Génie Cognitif. Editions Masson, Coll. Sciences Cognitives.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Adel Saadoun
    • 1
    • 2
  • Jean-Louis Ermine
    • 2
  • Claude Belair
    • 3
  • Jean-Mark Pouyot
    • 1
  1. 1.ScalaireBordeauxFrance
  2. 2.CEA/DIST/SMTI, Groupe Gestion des ConnaissancesCentre d'Etudes de SaclayGif sur Yvette CédexFrance
  3. 3.Editions du Juris-ClasseurParis CédexFrance

Personalised recommendations