Skip to main content
Log in

Focal-Plane and Multiple Chip VLSI Approaches to CNNs

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, three alternative VLSI analog implementations of CNNs are described, which have been devised to perform image processing and vision tasks: a programmable low-power CNN with embedded photo-sensors, a compact fixed-template CNN based on unipolar current-mode signals, and basic CMOS circuits to implement an extended CNN model using spikes. The first two VLSI approaches are intended for focal-plane image processing applications. The third one allows, since its dynamics is defined by process-independent local ratios and its input/outputs can be efficiently multiplexed in time, the construction of very large multiple chip CNNs for more complex vision tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. O. Chua and L. Yang, “Cellular neural networks: Theory.” IEEE Transactions on Circuits and Systems35(10), pp. 1257-1272, Oct. 1988.

    Google Scholar 

  2. L. O. Chua and L. Yang, “Cellular neural networks: Applications.” IEEE Transactions on Circuits and Systems35(10), pp. 1273-1290, Oct. 1988.

    Google Scholar 

  3. J. M. Cruz and L. O. Chua, “A CNN chip for connected component detection.” IEEE Transactions on Circuits and Systems38(7), pp. 812-816, July 1991.

    Google Scholar 

  4. H. Harrer, J. A. Nossek, and R. Stelzl, “An analog implementation of discrete-time cellular neural networks.” IEEE Transactions on Circuits and Systems39(3), pp. 466-476, May 1992.

    Google Scholar 

  5. A. Rodríguez Vázquez, S. Espejo, R. Domínguez Castro, J. L. Huertas, and E. Sánchez Sinencio, “Current-mode techniques for the implementation of continuous and discrete time cellular neural networks.” IEEE Transactions on Circuits and Systems Part I40(3), pp. 132-146, March 1993.

    Google Scholar 

  6. J. E. Varrientos, E. Sánchez-Sinencio, and J. Ramírez-Angulo, “A current-mode cellular neural networks implementation.” IEEE Transactions on Circuits and Systems Part I40(3), pp. 147-156, March 1993.

    Google Scholar 

  7. M. Anguita, F. J. Pelayo, A. Prieto, and J. Ortega, “Analog CMOS implementation of a discrete-time CNN with programmable cloning templates.” IEEE Transactions on Circuits and Systems Part I40(3), pp. 215-219, March 1993.

    Google Scholar 

  8. S. Espejo, A. Rodríguez-Vázquez, R. Domínguez-Castro, J. L. Huertas, and E. Sánchez-Sinencio, “Smart-pixel cellular neural networks in analog current-mode CMOS technology.” IEEE Journal of Solid-State Circuits29(8), August 1994.

  9. F. Sargeni and V. Bonaiuto, “High performance digitally programmable CNN chip with discrete templates,” in Proceedings of the CNNA-94, Rome, 1994, pp. 67-72.

  10. A. Paasio, A. Dawidziuk, K. Halonen, and V. Porra, “Current mode cellular neural network with digitally adjustable template coefficients,” in Proceedings Microneuro’ 94, IEEE Comp. Soc. Press., Turin, 1994, pp. 268-272.

    Google Scholar 

  11. P. Kinget and M. S. J. Steyaert, “A programmable analog cellular neural network CMOS chip for high speed image processing.” IEEE Journal of Solid-State Circuits30(3), March 1995.

  12. S. Espejo, “VLSI design and modeling of CNNs,” PhD. Dissertation, University of Sevilla, March, 1994.

  13. M. Anguita, F. J. Pelayo, F. J. Fernandez, and A. Prieto, “A low-power CMOS implementation of programmable CNNs with embedded photo-sensors.” To appear in IEEE Transactions on Circuits and Systems Part I.

  14. M. Anguita, F. J. Pelayo, E. Ros, D. Palomar, and A. Prieto, “VLSI implementations of CNNs for image processing and vision tasks: Single and multiple chip approaches,” invited talk at the 4th IEEE International Workshop on Cellular Neural Networks and their Applications, June, 1996.

  15. T. Matsumoto, L. O. Chua, and H. Suzuki, “CNN cloning template: Connected component detector.” IEEE Transactions on Circuits and Systems37, pp. 633-635, May 1990.

    Google Scholar 

  16. A. J. Schuler, M. Brabec, D. Shubel, and J. A. Nossek, “Hardware-oriented learning for cellular neural networks,” in Proceedings of CNNA-94, Rome, Italy, December 1994, pp. 183-188.

  17. M. Anguita, “Implementación de arquitecturas VLSI para redes neuronales celulares (CNNs),” Ph.D. Dissertation, Departamento de Electrónica y Tecnología de Computadores, Universidad de Granada, June 1996.

  18. A. Mortara and E. A. Vittoz, “A Communication Architecture Tailored for analog VLSI Artificial Neural Networks: Intrinsic Performance and Limitations.” IEEE Transactions on Neural Networks5(5), May 1994.

  19. A. Mortara, A. E. Vittoz, and Ph. Venier, “A communication scheme for analog VLSI perceptive systems.” IEEE Journal of Solid State Circuits30(6), pp. 660-669, June 1995.

    Google Scholar 

  20. F. J. Pelayo, E. Ros, P. Martin-Smith, F. J. Fernández, and A. Prieto, “A VLSI approach to the implementation of additive and shunting neural networks,” in Lecture Notes in Computer Science, Springer-Verlag, July 1995, vol. 930, pp. 728-735.

    Google Scholar 

  21. F. J. Pelayo, E. Ros, X. Arreguit, and A. Prieto, “Abio-inspired VLSI neural model using spikes.” Sent to Analog Integrated Circuits and Signal Processing, Kluwer Academic Publishers.

  22. X. Arreguit and E. A. Vittoz, “Perception systems implementation in analog VLSI for real-time applications,” in Proceedings of the PerAc’94, Lausanne, Switzerland, 1994, pp. 170-180.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anguita, M., Pelayo, F.J., Ros, E. et al. Focal-Plane and Multiple Chip VLSI Approaches to CNNs. Analog Integrated Circuits and Signal Processing 15, 263–275 (1998). https://doi.org/10.1023/A:1008214213665

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008214213665

Keywords

Navigation