Skip to main content
Log in

Mobility of NH bonds in DNA-binding protein HU of shape Bacillus stearothermophilus from reduced spectral density mapping analysis at multiple NMR fields

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The dynamics of the backbone NH bonds of protein HU from Bacillus stearothermophilus (HUBst) have been characterized using measurements of cross-relaxation, longitudinal and transverse relaxation rates\(({\text{R}}_{\text{N}} ({\text{H}}_{\text{z}} \leftrightarrow {\text{N}}_{\text{z}} ),{\text{R}}_{\text{N}} {\text{(N}}_{\text{z}} ){\text{ and R}}_{\text{N}} ({\text{N}}_{{\text{x,y}}} ))\) at 11.7, 14.1 and 17.6 T. Linear regression of the values\(2{\text{R}}_{\text{N}} ({\text{N}}_{{\text{x,y}}} ) - {\text{R}}_{\text{N}} ({\text{N}}_{\text{Z}} )\) with the squared Larmor frequency ω 2N has revealed global exchange processes, which contributed on the order of 0.5–5.0 s-1to the transverse relaxation rate. Subsequently, the experimental values\({\text{R}}_{\text{N}} ({\text{N}}_{{\text{x,y}}} )\) were corrected for these exchange contributions. A reduced spectral density mapping procedure has been employed with the experimental relaxation rates and seven values of the spectral density function J(ω) have been extracted. These spectral densities have been fitted within the framework of the model-free approach. The densities agree well with an axially symmetric rotational diffusion tensor with a diffusion anisotropy D_∥/D_⊥ of 1.15, indicating that the flexible arms of HUBst do not significantly contribute to the rotational diffusion. The overall correlation time is 8.9 ± 0.6 ns/rad. The fast internal motions of most of the NH bonds in the core display order parameters ranging between 0.74 and 0.83 and internal correlation times between 1 and 20 ps. For the residues in the DNA-binding β-arms, an extended version of the model function has been used. The slow internal motions show correlation times of 1–2 ns. The concomitant order parameters (0.3–0.6) are lower than those observed on the fast time scale, indicating that the flexibility of the β-arms is mainly determined by the slower internal motions. A substantial decrease of the generalized order parameters in the β-arms starting at residues Arg55 and Ser74, opposite on both strands of the β-ribbon arms, has been explained as a ‘hinge’ motion. A comparison of the order parameters for free and DNA-bound protein has demonstrated that the slow hinge motions largely disappear when HU binds DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akke, M. and Palmer III, A.G. (1996) J. Am. Chem. Soc., 118, 911–912.

    Google Scholar 

  • Brüschweiler, R. Liao, X. and Wright, P.E. (1995) Science, 268, 886–889.

    Google Scholar 

  • Cavanagh, J. Palmer III, A.G., Wright, P.E. and Rance, M. (1991) J. Magn. Reson., 91, 429–436.

    Google Scholar 

  • Clore, G.M., Bax, A., Driscoll, P.C., Wingfield, P.T. and Gronenborn, A.M. (1990a) Biochemistry, 29, 8172–8184.

    Google Scholar 

  • Clore, G.M., Szabo, A., Bax, A., Kay, L.E., Driscoll, P.C. and Gronenborn, A.M. (1990b) J. Am. Chem. Soc., 112, 4989–4991.

    Google Scholar 

  • Dayie, K.T. and Wagner, G. (1994) J. Magn. Reson., A111, 121–126.

    Google Scholar 

  • Deverell, C., Morgan, R.E. and Strange, J.H. (1970) Mol. Phys., 18, 553–559.

    Google Scholar 

  • Drlica, K. and Rouviere-Yaniv, J. (1987) Microbiol. Rev., 51, 301–319.

    Google Scholar 

  • Echols, H. (1990) J. Biol. Chem., 265, 14697–14700.

    Google Scholar 

  • Farrow, N.A., Zhang, O., Szabo, A., Torchia, D.A. and Kay, L.E. (1995) J. Biomol. NMR, 6, 153–162.

    Google Scholar 

  • Flashner, Y. and Gralla, J.D. (1988) Cell, 54, 713–721.

    Google Scholar 

  • Friedman, D.I. (1988) Cell, 55, 545–554.

    Google Scholar 

  • Funnel, B., Baker, T. and Kornberg, A. (1987) J. Biol. Chem., 262, 10327–10334.

    Google Scholar 

  • Geiduschek, E.P., Schneider, G.J. and Sayre, M.H. (1990) J. Struct. Biol., 104, 84–90.

    Google Scholar 

  • Goodman, S. Yang, C., Nash, H., Sarai, A. and Jernigan, R. (1990) In Structure and Methods, Vol. 2 (Eds., Sarma, R.H. and Sarma, M.H.), Adenine Press, New York, NY, pp. 51–62.

    Google Scholar 

  • Green, J.R. and Geiduschek, E.P. (1985) EMBO J., 4, 1345–1349.

    Google Scholar 

  • Habazettl, J. and Wagner, G. (1995) J. Magn. Reson., B109, 100–104.

    Google Scholar 

  • Hard, T. Sayre, M.H., Geiduschek, E.P. and Kearns, D.R. (1989) Biochemistry, 28, 2813–2819.

    Google Scholar 

  • Hiyama, Y., Niu, C.H., Silverton, J.V., Bavoso, A. and Torchia, D.A. (1988) J. Am. Chem. Soc., 112, 4989–4991.

    Google Scholar 

  • Ishima, R. and Nagayama, K. (1995) Biochemistry, 34, 3162–3171.

    Google Scholar 

  • Johnson, R., Bruist, M. and Simon, M. (1986) Cell, 46, 531–539.

    Google Scholar 

  • Kay, L.E., Torchia, D.A. and Bax, A. (1989) Biochemistry, 28, 8972–8979.

    Google Scholar 

  • Kay, L.E., Keifer, P. and Saarinen, T. (1992) J. Am. Chem. Soc., 114, 10663–10665.

    Google Scholar 

  • Keiter, E.A. (1986) Ph.D. Thesis, University of Illinois, Urbana-Champaign, IL.

  • Kinoshita, K., Kawato Jr., S. and Ikegami, A. (1977) Biophys. J., 20, 289–305.

    Google Scholar 

  • Lamini, M., Paci, M. and Gualerzi, C.B. (1984) FEBS Lett., 170, 99–104.

    Google Scholar 

  • Lavoie, B.D., Shaw, G.S., Millner, A. and Chaconas, G. (1996) Cell, 85, 761–771.

    Google Scholar 

  • Lee, L.K., Ranee, M., Chazin, WJ. and Palmer III, A.G. (1997) J. Biomol. NMR, 9, 287–298.

    Google Scholar 

  • Lefèvre, J.F., Dayie, K.T., Peng, J.W. and Wagner, G. (1996) Biochemistry, 35, 2674–2686.

    Google Scholar 

  • Lipari, G. and Szabo, A. (1982a) J. Am. Chem. Soc., 104, 4546–4559.

    Google Scholar 

  • Lipari, G. and Szabo, A. (1982b) J. Am. Chem. Soc., 104, 4559–4570.

    Google Scholar 

  • Mandel, A.M., Akke, M. and Palmer III, A.G. (1995) J. Mol. Biol., 246, 144–163.

    Google Scholar 

  • Marquardt, D.W. (1963) J. Soc. Ind. Appl. Math., 11, 431–441.

    Google Scholar 

  • Meiboom, S. and Gill, D. (1958) Rev. Sci. Instrum., 29, 688–691.

    Google Scholar 

  • Meiboom, S. (1961) J. Chem. Phys., 34, 375–388.

    Google Scholar 

  • Mengeritsky, G., Goldenberg, D., Mendelson, I., Giladi, H. and Oppenheim, A.B. (1993) J. Mol. Biol., 231, 646–657.

    Google Scholar 

  • Nash, H.A. (1996) In Regulation of Gene Expression in Escherichia coli (Eds., Lin, E.C.C. and Lynch, A.S.), R.G. Landes Company, Austin, pp. 149–179.

    Google Scholar 

  • Nicholson, L.K., Yamazaki, T., Torchia, D.A., Grzesiek, S., Bax, A., Stahl, S.J., Kaufman, J.D., Wingfield, P.T., Lam, P.Y.S., Jadhav, P.K., Hodge, C.N., Domaille, PJ. and Chang, C.H. (1995) Nat. Struct. Biol., 2, 274–280.

    Google Scholar 

  • Padas, P.M., Wilson, K.S. and Vorgias, C.E. (1992) Gene, 117, 39–44.

    Google Scholar 

  • Palmer III, A.G., Rance, M. and Wright, P.E. (1991) J. Am. Chem. Soc., 113, 4371–4380.

    Google Scholar 

  • Peng, J.W. and Wagner, G. (1992) J. Magn. Reson., 98, 308–332.

    Google Scholar 

  • Peng, J.W. and Wagner, G. (1995) Biochemistry, 34, 16733–16752.

    Google Scholar 

  • Pettijohn, D.E. (1988) J. Biol. Chem., 263, 12793–12796.

    Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vettering, W.T. and Flannery, B.P. (1992) Numerical Recipes, Cambridge University Press, Cambridge.

    Google Scholar 

  • Rice, P.A. (1997) Curr. Opin. Struct. Biol., 7, 86–93.

    Google Scholar 

  • Richarz, R., Nagayama, K. and Wüthrich, K. (1980) Biochemistry, 19, 5189–5196.

    Google Scholar 

  • Schmid, M.B. (1990) Cell, 63, 451–453.

    Google Scholar 

  • Schurr, J.M., Babcock, H.P. and Fujimoto, B.S. (1994) J. Magn. Reson., B105, 211–224.

    Google Scholar 

  • Shindo, H., Kurumizaka, H., Furubayashi, A., Sakuma, C., Matsumoto, U., Yanagida, A., Goshima, N., Kano, Y. and Imamoto, F. (1993) Biol. Pharm. Bull., 16, 437–443.

    Google Scholar 

  • Stone, M.J., Fairbrother, W.J., Palmer III, A.G., Reizer, J., Saier, M.H. and Wright, P.E. (1992) Biochemistry, 31, 4394–4406.

    Google Scholar 

  • Surette, M.G. and Chaconas, G. (1992) Cell, 68, 1101–1108.

    Google Scholar 

  • Szyperski, T., Luginbühl, P., Otting, G., Güntert, P. and Wüthrich, K. (1993) J. Biomol. NMR, 3, 151–164.

    Google Scholar 

  • Tanaka, I., Appelt, K., Dijk, J., White, S.W. and Wilson, K.S. (1984) Nature, 310, 376–381.

    Google Scholar 

  • Tjandra, N., Feller, S.E., Pastor, R.W. and Bax, A. (1995) J. Am. Chem. Soc., 117, 12562–12566.

    Google Scholar 

  • Tjandra, N., Wingfield, P., Stahl, S. and Bax, A. (1996) J. Biomol. NMR, 8, 273–284.

    Google Scholar 

  • Tropp, J. (1980) J. Chem. Phys., 47, 6035–6043.

    Google Scholar 

  • Vis, H., Boelens, R., Mariani, M., Stroop, R., Vorgias, C.E., Wilson, K.S. and Kaptein, R. (1994) Biochemistry, 33, 14858–14870.

    Google Scholar 

  • Vis, H., Mariani, M., Vorgias, C.E., Wilson, K.S., Kaptein, R. and Boelens, R. (1995) J. Mol. Biol., 254, 692–703.

    Google Scholar 

  • Vis, H., Vageli, O., Nagel, J., Vorgias, C.E., Wilson, K.S., Kaptein, R. and Boelens, R. (1996) Magn. Reson. Chem., 34, S81–S86.

    Google Scholar 

  • Wagner, G. (1993) Curr. Opin. Struct. Biol., 3, 748–754.

    Google Scholar 

  • Welfle, H., Misselwitz, R., Welfle, K., Groch, N. and Heinemann, U. (1992) Eur. J. Biochem., 204, 1049–1055.

    Google Scholar 

  • White, S.W., Appelt, K., Wilson, K.S. and Tanaka, I. (1989) Proteins, 5, 281–288.

    Google Scholar 

  • Woessner, D.E. (1962) J. Chem. Phys., 36, 647–654.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vis, H., Vorgias, C.E., Wilson, K.S. et al. Mobility of NH bonds in DNA-binding protein HU of shape Bacillus stearothermophilus from reduced spectral density mapping analysis at multiple NMR fields. J Biomol NMR 11, 265–277 (1998). https://doi.org/10.1023/A:1008208615714

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008208615714

Navigation