Skip to main content
Log in

Cladoceran and chironomid assemblages as qualitative indicators of water depth in subarctic Fennoscandian lakes

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

The relationship between surface-sediment cladoceran and chironomid communities to lake depth was analysed in 53 lakes distributed across timberline in northern Fennoscandia using multivariate statistical approaches. The study sites are small and bathymerically simple, with water depth ranging from 0.85-27.0 m (mean 6.36 m). Maximum lake depth was the most important factor in explaining the cladoceran distributions and the second most important factor in explaining the chironomid distributions in these subarctic lakes, as assessed on the basis of a series of constrained RDAs, Monte Carlo permutation tests, and variance partitioning. Quantitative inference models for maximum lake depth were created for both groups of animals. Well-performing calibration functions for predicting lake depth were obtained in each case using linear partial least squares (PLS) regression and calibration, weighted averaging (WA) with an 'inverse' deshrinking regression, and weighted averaging partial least squares (WA-PLS). Quantitative reconstructions of lake level fluctuations should be possible from cladoceran and chironomid core data with a root mean squared error of prediction (RMSEP), as estimated by jack-knifing, of about 1.6-3.0 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alhonen, P., 1970a. On the significance of the planktonic/littoral ratio in the cladoceran stratigraphy of lake sediments. Comm. Biol. 35: 1–9.

    Google Scholar 

  • Alhonen, P., 1990b. The palaeolimnology of four lakes in southwest Finland. Ann. Acad. Sci. Fennicae A. III. 105. 39 pp.

  • Birks, H. J. B., 1995. Quantitative palaeoenvironmental reconstructions. In Maddy, D. & J. S. Brew (eds), Statistical Modelling of Quaternary Science Data. Quaternary Research Association, Cambridge, 161–254.

    Google Scholar 

  • Bocard, D., P., Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.

    Google Scholar 

  • Devol, A. H. & R. C. Wessmar, 1978. Analysis of five North American lake ecosystems. V. Primary production and community structure. Verh. Int. Ver. Limnol. 20: 581–586.

    Google Scholar 

  • Dixit, S. S., B. F. Cumming, H. J. B. Birks, J. P. Smol, J. C. Kingston, A. J. Uutala & D. F. Charles, 1993. Diatom assemblages from Adirondack lakes (New York, USA) and the development of inference models for retrospective environmental assessment. J. Paleolimnol. 8: 27–47.

    Google Scholar 

  • Frey, D. G., 1986. Cladocera analysis. In Berglund, B. E. (ed.), Handbook of Holocene Palaeoecology and Palaeoecology. John Wiley & Sons, Chichester, 667–692.

    Google Scholar 

  • Frey, D. G., 1988. Littoral and offshore communities of diatoms, cladocerans and dipterous larvae, and their interpretation in paleolimnology. J. Paleolim. 1: 179–191.

    Google Scholar 

  • Hann, B. J., 1989. Methods in Quaternary Ecology. #6. Cladocera. Geosci. Canada 16: 17–26.

    Google Scholar 

  • Hofmann, W., 1987. Cladocera in space and time: Analysis of lake sediments. Hydrobiologia 145: 315–321.

    Google Scholar 

  • Juggins, S. & C. J. F. ter Braak, 1992. CALIBRATE – a program for species-environment calibration by [weighted-averaging] partial least squares regression. Environmental Change Research Centre, University College London.

  • Kansanen, P. H., J. Aho & L. Paasivirta, 1984. Testing the benthic lake type concept based on chironomid associations in some Finnish lakes using multivariate statistical methods. Ann. Zool. Fenn. 21: 55–76.

    Google Scholar 

  • Korhola, A., 1990. Palaeolimnology and hydroseral development of the Kotasuo bog, southern Finland, with special reference to the Cladocera. Ann. Acad. Sci. Fenn. A. III. 155. 40 pp.

  • Korhola, A., 1992. The Early Holocene hydrosere in a small acid hill-top basin studied using crustacean sedimentary remains. J. Paleolim. 7: 1–22.

    Google Scholar 

  • Korhola, A. 1999. Distribution patterns of Cladocera in subarctic Fennoscandian lakes and their potential in environmental reconstruction. Ecography: 357–373.

  • Korhola, A. & M. Tikkanen, 1991. Holocene development and early extreme acidification in a small hilltop lake in southern Finland. Boreas 20: 333–356.

    Google Scholar 

  • Korhola, A. & M. Tikkanen, 1993. Divergent successions in two adjacent rocky basins in southern Finland: A physiographic and palaeoecological evaluation. Ann. Acad. Sci. Fenn. A. III. 157. 26 pp.

  • Korsman, T. & H. J. B. Birks, 1996. Diatom-based water chemistry reconstructions from northern Sweden: A comparison of reconstruction techniques. J. Paleolim. 15: 65–77.

    Google Scholar 

  • Kuusisto, E., 1981. Suomen vesistöjen lämpötilat kaudella 1961– 1975. Vesientutkimuslaitoksen julkaisuja 55. Helsinki, Vesihallitus. 149 pp.

    Google Scholar 

  • Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1997. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. J. Paleolim. 18: 395–420.

    Google Scholar 

  • Nilssen, J. P., 1978. Selective vertebrate and invertebrate predation – some palaeolimnological implications. Pol. Arch. Hydrobiol. 25: 307–320.

    Google Scholar 

  • Olander, H., A. Korhola & T. Blom, 1997. Surface sediment Chironomidae (Insecta: Diptera) distributions along an ecotonal transect in subarctic Fennoscandia: Developing a tool for palaeotemperature reconstructions. J. Paleolim. 18: 45–59.

    Google Scholar 

  • Olander, H., H. J. B. Birks, A. Korhola & T. Blom, 1999. An expanded calibration model for inferring lakewater and air temperatures from fossil chironomid assemblages in northern Fennoscandia. The Holocene 9: 279–294.

    Google Scholar 

  • Paterson, M., 1993. The distribution of microcrustacea in the littoral zone of a freshwater lake. Hydrobiologia 263: 173–183.

    Google Scholar 

  • Rautio, M., 1998. Community structure of crustacean zooplankton in subarctic ponds – effects of altitude and physical heterogeneity. Ecography 21: 328–337.

    Google Scholar 

  • Smol, J. P., I. R. Walker & P. Leavitt, 1991. Paleolimnology and hindcasting climatic trends. Verh. Int. Ver. Limnol. 24: 1240–1246.

    Google Scholar 

  • ter Braak, C. J. F., 1990. Update notes: CANOCO version 3.10. Agricultural Mathematics Group, Wageningen.

    Google Scholar 

  • ter Braak, C. J. F. & I. C. Prentice, 1988. A theory of gradient analysis. Adv. Ecol. Res. 18: 271–317.

    Google Scholar 

  • ter Braak, C. J. F. & S. Juggins, 1993. Weighted averaging partial least squares regression (WA-PLS): An improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269/270: 485–502.

    Google Scholar 

  • Uimonen-Simola, P. & K. Tolonen, 1987. Effects of recent acidification on Cladocera in small clear-water lakes studied by means of sedimentary remains. Hydrobiologia 145: 343–351.

    Google Scholar 

  • Walker, I. R. & G. M. MacDonald, 1995. Distributions of Chironomidae (Insecta: Diptera) and other freshwater midges with respect to treeline, Northwest Territories, Canada. Arct. Alp. Res. 27: 258–263.

    Google Scholar 

  • Walker, I. R., J. P. Smol, D. R. Engstrom & H. J. B. Birks, 1991. An assessment of Chironomidae as quantitative indicators of past climatic change. Can. J. Fish. Aquat. Sci. 48: 975–987.

    Google Scholar 

  • Weckström, J., A. Korhola & T. Blom, 1997a. The relationship between diatoms and water temperature in thirty subarctic Fennoscandian lakes. Arct. Alp. Res. 29: 75–92.

    Google Scholar 

  • Weckström, J., A. Korhola & T. Blom, 1997b. Diatoms as quantitative indicators of pH and water temperature in subarctic Fennoscandian lakes. Hydrobiologia 347: 171–184.

    Google Scholar 

  • Whiteside, M. C., 1970. Danish chydorid Cladocera: Modern ecology and core studies. Ecol. Monogr. 40: 79–118.

    Google Scholar 

  • Whiteside, M. C., 1983. The mythical concept of eutrophication. Hydrobiologia 103: 107–111.

    Google Scholar 

  • Whiteside, M. C. & M. R. Swindoll, 1988. Guidelines and limitations to cladoceran palaeoecological interpretations. Palaeogeogr. Palaeoclim. Palaeoecol. 62: 405–412.

    Google Scholar 

  • Whiteside, M. C., J. B. Williams & C. P. White, 1978. Seasonal abundance and pattern of chydorid Cladocera in mud and vegetative habitats. Ecology 59: 1177–1188.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korhola, A., Olander, H. & Blom, T. Cladoceran and chironomid assemblages as qualitative indicators of water depth in subarctic Fennoscandian lakes. Journal of Paleolimnology 24, 43–54 (2000). https://doi.org/10.1023/A:1008165732542

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008165732542

Navigation