Skip to main content
Log in

3D Geometry Reconstruction from Multiple Segmented Surface Descriptions Using Neuro-Fuzzy Similarity Measures

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents a novel solution to the reconstruction of 3D geometry models from partial, segmented (2.5D or 3D) range views. First, the geometric fusion works entirely on sparse symbolic information, i.e. attributed surface graphs, rather than point data or triangulated meshes. Thus, new sensor data can always be integrated with an existing partial model available for symbolic action planning. Second, assumptions on automatic registration are weaker than those found in related work: the views need not be approximately calibrated, and no pre-existing knowledge of their overlap is needed. In order to find corresponding (redundant) surface features reliably even under high-noise and occlusion conditions we develop Neuro-Fuzzy similarity measures on surface descriptions. Third, we propose a reasonably complete prototype system including algorithms for merging sparse, reduced surface attributes, in particular boundaries. The experimental results from segmented range images of an indoor camera motion sequence demonstrate the ability to cope with unknown camera positions, low image resolution, large measurement and segmentation errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Hamadi, H. and Tsui, H.-T.: 3D surface approximation using polygons of fixed orientation for a vision system in a mobile robot, in: Proc. 4th Intl. Conf. on Signal Processing Applications and Technology, Santa Clara, USA, 28 Sept.-1 Oct. 1993, pp. 1332-1336.

  2. Ashbrook, A. P., Fisher, R. B., Robertson, C. and Werghi, N.: Finding surface correspondences for object recognition and registration using pairwise geometric histograms, in: Proc. 5th Eur. Conf. on Computer Vision, Vol. II, Freiburg, Germany, June 1998, pp. 674-680.

  3. Azarm, K., Bott, W., Freyberger, F., Glüer, D., Horn, J. and Schmidt, G.: Autonomiebausteine des mobilen Roboters MACROBE (in German), in: 9 Fachgespräch Autonome Mobile Systeme, Munich, 28-29 Oct. 1993, pp. 81-94.

  4. Bailey, A. D. and Fröhlich, C.: Reverse engineering a process plant to produce a 3-D CAD model, in: Numerisation 3D '99, The 4th Industrial Congress on 3D Digitizing and Industrial Creation, Paris, France, 19-20 May 1999.

  5. Begevin, R., Soucy, M., Gagnon, H. and Laurendeau, D.: Towards a general multi-view registration technique, IEEE PAMI 18(5) (1996), 540-547.

    Google Scholar 

  6. Berztiss, A. T.: Data Structures: Theory and Practice, Academic Press, New York, 1975.

    Google Scholar 

  7. Besl, P. J.: Surfaces in Range Image Understanding, Springer Series in Perception Engineering, ed. R. C. Jain, Springer, New York, 1988.

    Google Scholar 

  8. Besl, P. J. and McKay, D. N.: A method for registration of 3-D shapes, IEEE Trans. PAMI 14(2) (1992), 239-256.

    Google Scholar 

  9. Blais, G. and Levine, M. D.: Registering multiview range data to create 3D computer objects, IEEE PAMI 17(8) (1995), 820-824.

    Google Scholar 

  10. Boulanger, P. and Blais, F.: Range image segmentation, free space determination, and position estimate for a mobile vehicle, SPIE, Vol. 1831, Mobile Robots VII, 1992, 444-455.

    Google Scholar 

  11. Boyer, E. and Berger, M.-O.: 3D surface reconstruction using occluding contours, Int. J. Computer Vision 22(3) (1997), 219-233.

    Google Scholar 

  12. Bunke, H. and Shearer, K.: A graph distance metric based on the maximal common subgraph, Pattern Recognition Lett. 19 (1998), 255-259.

    Google Scholar 

  13. Bunke, H.: On a relation betweeen graph edit distance and maximum common subgraph, Pattern Recognition Lett. 18 (1997), 689-694.

    Google Scholar 

  14. Burgard, W., Fox, D., Hennig, D. and Schmidt, T.: Estimating the absolute position of a mobile robot using position probability grids, in: Proc. 14th National Conference on Artificial Intelligence.

  15. Dario, P., Rucci, M., Guadagnini, C. and Laschi, C.: An experimental robot system for investigating disassembly problems, in: Proc. IEEE/Tsukuba Intl. Workshop on Advanced Robotics, Tsukuba, Japan, 8-9 Nov. 1993.

  16. Dorai, C., Wang, G., Jain, A. K. and Mercer, C.: Registration and integration of multiple object views for 3D model construction, IEEE Trans. PAMI 20(1) (1998), 83-89.

    Google Scholar 

  17. Dori, D. and Weiss, M.: A scheme for 3D object reconstruction from dimensioned orthographic views, Eng. Appl. of Artificial Intelligence 9(1) (1996), 53-64.

    Google Scholar 

  18. Driankov, Hellendoorn, H. and Reinfrank, M.: An Introduction to Fuzzy Control, 2nd edn, Springer, 1996.

  19. Eggert, D. W., Fitzgibbon, A. W. and Fisher, R. B.: Simultaneous registration of multiple range views for use in reverse engineering of CAD models, Computer Vision and Image Understanding 69(3) (1998), 253-272.

    Google Scholar 

  20. Fan, T. J.: Describing and Recognizing 3-D Objects Using Surface Properties, Springer, New York, 1990.

    Google Scholar 

  21. Faugeras, O. D. and Hebert, M.: The representation, recognition, and locating of 3-D objects, Intl. J. Robotics Research 5(3) (1986), 27-52.

    Google Scholar 

  22. Fischer, D., Kohlhepp, P. and Bulling, F.: An evolutionary algorithm for the registration of 3-D surface representations, Pattern Recognition (Special Issue on Image Registration) 12 (1998), 53-69.

    Google Scholar 

  23. Fisher, R. B., Fitzgibbon, A.W. and Eggert, D.: Extracting surface patches from complete range descriptions, in: Proc. Int. Conf. on Recent Advances in 3-D Digital Imaging and Modeling, Ottawa, Canada, May 1997, pp. 148-155.

  24. Fitzgibbon, A. W., Eggert, D. W. and Fisher, R. B.: High-level CAD model acquisition from range images, Computer-Aided Design 29(4) (1997), 321-330.

    Google Scholar 

  25. Flynn, P. J. and Jain, A. C.: 3D object recognition using invariant feature indexing of interpretation tables, CVGIP: Image Understanding 55(2) (1992), 119-129.

    Google Scholar 

  26. Grimson, W. E. L. and Lozano-Perez, T.: Localizing overlapping parts by searching the interpretation tree, IEEE PAMI 9(4) (1987).

  27. Hebert, M., Ikeuchi, K. and Delingette, H.: A spherical representation for recognition of freeform surfaces, IEEE Trans. PAMI 17(7) (1995), 681-690.

    Google Scholar 

  28. Hilton, A., Stoddart, A. J., Illingworth, J. and Windeatt, T.: Reliable Surface Reconstruction from Multiple Range Images, Lecture Notes in Comput. Sci. 1064, Springer-Verlag, 1996, 117-126.

    Google Scholar 

  29. Holliday, M., Dougan, A., Gavel, D., Gustaveson, D., Johnson, R., Kettering, B. and Wilhelmsen, K.: Demonstration of automated robotic workcell for hazardous waste characterization, in: IEEE Intl. Conf. on Robotics and Automation, Atlanta, USA, 2-6 May 1993, pp. 788-794.

  30. Hoover, A., Goldgof, D. and Bowyer, K. W.: Extracting a valid boundary representation from a segmented range image, IEEE PAMI 17(9) (1995), 920-924.

    Google Scholar 

  31. Hoover, A., Jean-Baptiste, G., Jiang, X., Flynn, P. J., Bunke, H., Goldgof, D. B., Bowyer, K., Eggert, D. W., Fitzgibbon, A. and Fisher, R. B.: An experimental comparison of range image segmentation algorithms, IEEE PAMI 18(7) (1996), 673-689.

    Google Scholar 

  32. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J. and Stuetzle, W.: Surface reconstruction from unorganized points, Computer Graphics 26 (1992), 71-78.

    Google Scholar 

  33. Integrated Vision Products (IVP), RS2200 RANGER PCI, User Documentation, Linköping, Sweden, 1996.

  34. Jiang, X. and Bunke, H.: Three-dimensional Computer Vision (in German), Springer, 1997.

  35. Johnson, A. E. and Hebert, M.: Surface registration by matching oriented points, in: International Conference on Recent Advances in 3-D Digital Imaging and Modeling, Ottawa, Ontario, 12-15 May 1997.

  36. Kak, A. and Edwards, J. L.: Experimental state of the art in 3D object recognition and localization using range data, in: Proceedings of Workshop on Vision for Robots, IEEE Press, Pittsburgh, PA, 1995.

    Google Scholar 

  37. Kohlhepp, P.: Combining region and edge based segmentation for robust 3D localization in range mages, in: 2nd Asian Conference on Computer Vision (ACCV), Singapore, 2-3 Dec. 1995, pp. 254-258.

  38. Kohlhepp, P., Fischer, D. and Hoffmann, E.: Intrinsic line features and contour metric for locating 3-D objects in sparse, segmented range images, Image and Vision Computing (Special Issue on Visual Form Analysis) 17 (1999), 403-417.

    Google Scholar 

  39. Kosko, B.: Neural Networks and Fuzzy Systems, Prentice-Hall, 1992.

  40. Kuntze, H.-B., Schmidt, D., Haffner, H. and Loh, M.: KARO-a flexible robot for smart sensorbased sewer inspection, in: NODIG '95, Dresden, 19-22 Sept. 1995, pp. 367-374.

  41. Lang, S. Y. T. andWong, A. K. C.:Map making for an autonomous mobile robot, in: 2nd IARP Workshop on Sensor Fusion and Environmental Modeling, Oxford, UK, Sept. 1991.

  42. Lin, C.-C. and Tummala, R. L.: Mobile robot navigation using artificial landmarks, J. Robotics Systems 14(2) (1997), 93-106.

    Google Scholar 

  43. Mohr, R., Quan, L. and Veillon, F.: Relative 3D reconstruction using multiple uncalibrated images, The Internat. J. Robotics Research 14(6) (1995), 619-632.

    Google Scholar 

  44. NN, fuzzyTech 4.1 reference manual, Inform GmbH (Gemany), 1996.

  45. Orr, M. J. L., Hallam, J. and Fisher, R. B.: Fusion through interpretation, in: G. Sandini (ed.), Proc. 2nd European Conf. on Computer Vision, St. Margherita Ligure, Italy, 1992, pp. 801-805.

    Google Scholar 

  46. Shaffer, G. K., Stentz, A., Whittaker, W. L. and Fitzpatrick, K. W.: Position estimator for underground mine equipment, in: Proc. Intl. Workshop on Information Processing in Autonomous Mobile Robots, Munich, 6-8 Mar. 1991, pp. 1-10.

  47. Shapiro, L. G. and Haralick, R. M.: Organization of relational models for scene analysis, IEEE PAMI 4(11) (1982), 595-602.

    Google Scholar 

  48. Soucy, M. and Laurendeau, D.: A general surface approach to the integration of a set of range views, IEEE PAMI 17(4) (1995), 344-358.

    Google Scholar 

  49. Talluri, R. and Aggarwal, J. K.: Mobile robot self-location using constrained search, in: IEEE/RSJ Intl. Workshop on Intelligent Robots and Systems IROS '91, Osaka, Japan, 3-5 Nov. 1991, pp. 903-908.

  50. Thrun, S., Gutmann, J.-S., Fox, D., Burgard, W. and Kuipers, B.: Integrating topological and metric maps for mobile robot navigation: A statistical approach, in: Proceedings of the 15th National Conference on Artificial Intelligence (AAAI-98), July 1998.

  51. Thrun, S. and Brücken, A.: Integrating grid-based and topological maps for mobile robot navigation, in: Proc. of the 13th National Conference on Artificial Intelligence AAAI, Portland, Oregon, Aug. 1996.

  52. Várady, T., Martin, R. and Cox, J.: Reverse engineering of geometric models-an introduction, Computer Aided Design 29(4) (1997), 255-268.

    Google Scholar 

  53. Wallner, F., Graf, R. and Dillmann, R.: Real-time map refinement by fusing sonar and active stereo-vision, in: IEEE International Conference on Robotics and Automation, Nagoya, 1995.

  54. Wilkes, D.: Using point range samples for reprojection of model views for landmark-based robot navigation, SPIE, Vol. 2355, Sensor Fusion VII, 1994, 147-156.

    Google Scholar 

  55. Xie, S. and Calvert, T. W.: Incremental construction of 3-D models from a sequence of framed views, in: Proc. Graphics Interface '86, Vancouver, 1986, pp. 300-306.

  56. Yamauchi, B. and Langley, P.: Place recognition in dynamic environments, J. Robotics Systems 14(2) (1997), 107-120.

    Google Scholar 

  57. Yan, Q.-W., Chen, P. and Tang, Z.: Efficient algorithm for the reconstruction of 3D objects from orthographic projections, Computer Aided Design 26(9) (1994), 699-717.

    Google Scholar 

  58. http://www.iai.fzk.de/Sombrero/somb_objerk/similarity/NF_tool.html: Neuro-Fuzzy rule base.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, D., Kohlhepp, P. 3D Geometry Reconstruction from Multiple Segmented Surface Descriptions Using Neuro-Fuzzy Similarity Measures. Journal of Intelligent and Robotic Systems 29, 389–431 (2000). https://doi.org/10.1023/A:1008164101786

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008164101786

Navigation