Journal of Computer-Aided Molecular Design

, Volume 13, Issue 3, pp 243–258 | Cite as

A comparative study of ligand-receptor complex binding affinity prediction methods based on glycogen phosphorylase inhibitors

  • Sung-Sau So
  • Martin Karplus
Article

Abstract

Finding an accurate method for estimating the affinity of protein ligands activity is the most challenging task in computer-aided molecular design. In this study we investigate and compare seven different prediction methods for a set of 30 glycogen phosphorylase (GP) inhibitors with known crystal structures. Five of the methods involve quantitative structure-activity relationships (QSAR) based on the 2D or 3D structures of the GP ligands alone. They are hologram QSAR (HQSAR), receptor surface model (RSM), comparative molecular field analysis (CoMFA), and applications of genetic neural network to similarity matrix (SM/GNN) or conventional descriptors (C2GNN). All five QSAR-based models have good predictivity and yield q2 values ranging from 0.60 to 0.82. The other two methods, LUDI and a structure-based binding energy predictor (SBEP) system, make use of the structures of the ligand-receptor complexes. The weak correlation between biological activities and the LUDI scores of this set of inhibitors suggests that the LUDI scoring function, by itself, may not be a general method for reliable ranking of a congeneric series of compounds. The SBEP system is derived from a set of physical properties that characterizes ligand-receptor interactions. The final neural network model, which yields a q2 value of 0.60, employs four descriptors. A jury method that combines the predictions of the five QSAR-based models leads to an increase in predictivity. A multi-layer scoring system that utilizes all seven prediction methods is proposed for the evaluation of novel GP ligands.

binding affinity prediction CoMFA genetic neural network glycogen phosphorylase inhibitor QSAR structure-based drug design 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tokarski, J.S. and Hopfinger, A.J., J. Chem. Inf. Comput. Sci., 37 (1997) 792.Google Scholar
  2. 2.
    Hansch, C. and Leo, A., Substituent Constants for Correlation Analysis in Chemistry and Biology, John Wiley & Sons, Inc., New York, NY, 1979.Google Scholar
  3. 3.
    Randic, M., J. Am. Chem. Soc., 97 (1975) 6609.Google Scholar
  4. 4.
    Hall, L.H. and Kier, L.B., J. Chem. Inf. Comput. Sci., 35 (1995) 1039.Google Scholar
  5. 5.
    Hurst, T. and Heritage, T., Abstract of Papers of the Am. Chem. Soc., 213 (1997) 19.Google Scholar
  6. 6.
    Hurst, T., Heritage, T.W. and Clark, R.D., Abstract of Papers of the Am. Chem. Soc., 215 (1998) 38.Google Scholar
  7. 7.
    Tong, W.D., Perkins, R., Sheehan, D.M., Welsh, W.J., Lowis, D.R. and Goddette, D.W., Abstract of Papers of the Am. Chem. Soc., 214 (1997) 81.Google Scholar
  8. 8.
    HQSAR, Version 1.0, Tripos, Inc., St. Louis, MO.Google Scholar
  9. 9.
    Winkler, D.A. and Burden, F.R., Quant. Struct.-Act. Relat., 17 (1998) 224.Google Scholar
  10. 10.
    Silverman, B.D. and Platt, D.E., J. Med. Chem., 39 (1996) 2129.Google Scholar
  11. 11.
    Goodford, P.J., J. Med. Chem., 28 (1985) 849.Google Scholar
  12. 12.
    Cramer III, R.D., Patterson, D.E. and Bunce, J.D., J. Am. Chem. Soc., 110 (1988) 5959.Google Scholar
  13. 13.
    Good, A.C., So, S.-S. and Richards, W.G., J. Med. Chem., 36 (1993) 433.Google Scholar
  14. 14.
    Good, A.C., Peterson, S.J. and Richards, W.G., J.Med. Chem., 36 (1993) 2929.Google Scholar
  15. 15.
    So, S.-S. and Karplus, M., J. Med. Chem., 39 (1996) 1521.Google Scholar
  16. 16.
    So, S.-S. and Karplus, M., J. Med. Chem., 39 (1996) 5246.Google Scholar
  17. 17.
    So, S.-S. and Karplus, M., J. Med. Chem., 40 (1997) 4347.Google Scholar
  18. 18.
    So, S.-S. and Karplus, M., J. Med. Chem., 40 (1997) 4360.Google Scholar
  19. 19.
    Hahn, M., J. Med. Chem., 38 (1995) 2080.Google Scholar
  20. 20.
    Hahn, M. and Rogers, D., J. Med. Chem., 38 (1995) 2091.Google Scholar
  21. 21.
    Böhm, H.-J., J. Comput.-Aided Mol. Design, 6 (1992) 593.Google Scholar
  22. 22.
    Böhm, H.-J., J. Comput.-Aided Mol. Design, 8 (1994) 243.Google Scholar
  23. 23.
    DeWitte, R.S. and Shakhnovich, E.I., J. Am. Chem. Soc., 118 (1996) 11733.Google Scholar
  24. 24.
    DeWitte, R.S., Ishchenko, A.V. and Shakhnovich, E.I., J. Am. Chem. Soc., 119 (1997) 4608.Google Scholar
  25. 25.
    Welch, W., Ruppert, J. and Jain, A.N., Chem. Biol., 3 (1996) 449.Google Scholar
  26. 26.
    Holloway, M.K., Wai, J.M., Halgren, T.A., Fitzgerald, P.M., Vacca, J.P., Dorsey, B.D., Levin, R.B., Thompson, W.J., Chen, L.J. and deSolms, S.J., J. Med. Chem., 38 (1995) 305.Google Scholar
  27. 27.
    Åqvist, J., Medina, C. and Samuelsson, J.E., Protein Eng., 7 (1994) 385.Google Scholar
  28. 28.
    Ajay and Murcko, M.A., J. Med. Chem., 38 (1995) 4953.Google Scholar
  29. 29.
    Gilson, M.K., Given, J.A., Bush, B.L. and McCammon, J.A., Biophys. J., 72 (1997) 1047.Google Scholar
  30. 30.
    Martin, J.L., Johnson, L.N. and Withers, S.G., Biochemistry, 29 (1990) 10745.Google Scholar
  31. 31.
    Martin, J.L., Veluraja, K., Ross, K., Johnson, L.N., Fleet, G.W., Ramsden, N.G., Bruce, I., Orchard, M.G., Oikonomakos, N.G. and Papageorgiou, A.C., Biochemistry, 30 (1991) 10101.Google Scholar
  32. 32.
    Johnson, L.N., Snape, P., Martin, J.L., Acharya, K.R., Barford, D. and Oikonomakos, N.G., J. Mol. Biol., 232 (1993) 253.Google Scholar
  33. 33.
    Oikonomakos, N.G., Kontou, M., Zographos, S.E., Tsitoura, H.S., Johnson, L.N., Watson, K.A., Mitchell, E.P., Fleet, G.W., Son, J.C., Bichard, C.J., Leonidas, D.D. and Acharya, K.R., Eur. J. Drug Metab. Pharmacokinet., 19 (1994) 185.Google Scholar
  34. 34.
    Watson, K.A., Mitchell, E.P., Johnson, L.N., Son, J.C., Bichard, C.J., Orchard, M.G., Fleet, G.W., Oikonomakos, N.G., Leonidas, D.D. and Kontou, M., Biochemistry, 33 (1994) 5745.Google Scholar
  35. 35.
    Oikonomakos, N.G., Kontou, M., Zographos, S.E., Watson, K.A., Johnson, L.N., Bichard, C.J., Fleet, G.W. and Acharya, K.R., Protein Sci., 4 (1995) 2469.Google Scholar
  36. 36.
    Oikonomakos, N.G., Zographos, S.E., Johnson, L.N., Papageorgiou, A.C. and Acharya, K.R., J. Mol. Biol., 254 (1995) 900.Google Scholar
  37. 37.
    Watson, K.A., Mitchell, E.P., Johnson, L.N., Cruciani, G., Son, J.C., Bichard, C.J.F., Fleet, G.W.J., Oikonomakos, N.G., Kontou, M. and Zographos, S.E., Acta Crystallogr., D51 (1995) 458.Google Scholar
  38. 38.
    Bichard, C.J.F., Mitchell, E.P., Wormald, M.R., Watson, K.A., Johnson, L.N., Zographos, S.E., Koutra, D.D., Oikonomakos, N.G. and Fleet, G.W.J., Tetrahedron Lett., 36 (1995) 2145.Google Scholar
  39. 39.
    Krülle, T.M., Watson, K.A., Gregoriou, M., Johnson, L.N., Crook, S., Watkin, D.J., Griffiths, R.C., Nash, R.J., Tsitsanou, K.E., Zographos, S.E., Oikonomakos, N.G. and Fleet, G.W.J., Tetrahedron Lett., 36 (1995) 8281.Google Scholar
  40. 40.
    Hahn, M., J. Chem. Inf. Comput. Sci., 37 (1997) 80.Google Scholar
  41. 41.
    Rogers, D.R. and Hopfinger, A.J., J. Chem. Inf. Comput. Sci., 34 (1994) 854.Google Scholar
  42. 42.
    Dean, P.M., In Kubinyi, H. (Ed.), 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, The Netherlands, 1993, p. 150.Google Scholar
  43. 43.
    Richards, W.G., In Pullman, A., Jortner, J. and Pullman, B. (Eds.), Modelling of Biomolecular Structures and Mechanisms, Kluwer Academic Publishers, Dordrecht, the Netherlands, 1995, p. 365.Google Scholar
  44. 44.
    Carbó, R., Leyda, L. and Arnau, M., Int. J. Quantum Chem., 17 (1980) 1185.Google Scholar
  45. 45.
    Hodgkin, E.E. and Richards, W.G., Int. J. Quantum Chem., Quantum Biol. Symp., 14 (1987) 105.Google Scholar
  46. 46.
    Search_Compare, Version 95.0, Molecular Simulations Inc., San Diego, CA.Google Scholar
  47. 47.
    Maple, J.R., Hwang, M.-J., Stockfisch, T.P., Dinur, U., Waldman, M., Ewig, C.S. and Hagler, A.T., J. Comput. Chem., 15 (1994) 162.Google Scholar
  48. 48.
    Hwang, M.-J., Stockfisch, T.P. and Hagler, A.T., J. Am. Chem. Soc., 116 (1994) 2515.Google Scholar
  49. 49.
    Cerius2, Version 3.0, Molecular Simulations Inc., San Diego, CA.Google Scholar
  50. 50.
    Ligand_Design, Version 95.0, Molecular Simulations Inc., San Diego, CA.Google Scholar
  51. 51.
    Discover, Version 95.0, Molecular Simulations Inc., San Diego, CA.Google Scholar
  52. 52.
    Froloff, N., Windemuth, A. and Honig, B., Protein Sci., 6 (1995) 1293.Google Scholar
  53. 53.
    Pickett, S.D. and Sternberg, M.J.E., J. Mol. Biol., 231 (1993) 825.Google Scholar
  54. 54.
    Eldridge, M.D., Murray, C.W., Auton, T.R., Paolini, G.V. and Mee, R.P., J. Comput.-Aided Mol. Design, 11 (1997) 425.Google Scholar
  55. 55.
    So, S.-S. and Richards, W.G., J. Med. Chem., 35 (1992) 3201.Google Scholar
  56. 56.
    Ajay, Chemometr. Intell. Lab., 24 (1994) 19.Google Scholar
  57. 57.
    Chandonia, J.-M., Neural network based algorithms for protein structure prediction, Ph.D. Thesis, The Committee on Higher Degrees in Biophysics, Harvard University, 1997.Google Scholar
  58. 58.
    Head, R.D., Smythe, M.L., Oprea, T.I., Waller, C.L., Green, S.M. and Marshall, G.R., J. Am. Chem. Soc., 118 (1996) 3959.Google Scholar
  59. 59.
    Hansson, T., Marelius, J. and Åqvist, J., J. Comput.-Aided Mol. Design, 12 (1998) 27.Google Scholar
  60. 60.
    Guo, Z. and Brooks, C.L.I., J. Am. Chem. Soc., 120 (1998) 1920.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Sung-Sau So
    • 1
  • Martin Karplus
    • 1
  1. 1.Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeU.S.A

Personalised recommendations