Skip to main content
Log in

Analysis of the use of fortified medium in continuous culture of mammalian cells

  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Continuous culture is frequently used in the cultivation of mammalian cells for the manufacturing of recombinant protein pharmaceuticals. In such operations a large volume of medium is turned over each day, especially in the case where cell recycle, or perfusion cultivation, is practiced. In principle, the volumetric throughput of medium can be reduced by using a more concentrated feed while maintaining the same nutrient provision rate. Overall, the medium components are divided into two categories: ‘consumable nutrients' and ‘unconsumable inorganic bulk salts’. In such fortified medium, the concentrations of consumable nutrients, but not bulk salts, are increased. With a stoichiometrically-balanced medium, the large amount of nutrients fed into the culture is largely consumed by cells to give rise to residual concentrations of these nutrients in their optimal range. However, unless care is taken to initiate the continuous culture, overshoot of nutrients may occur during the transient period. The high nutrient concentration during overshoot may be inhibitory by itself, or the resulting high osmolality may retard the growth. Using a mathematical model that incorporates the growth inhibitory effect of high osmolality we demonstrate such a potentially catastrophic effect of nutrient and osmolality overshoot by simulation. To avoid overshoot a controlled nutrient feeding scheme should be devised at the initiation of continuous culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Batt BC, Davis RH and Kompala DS (1990) Inclined sedimentation for selective retention of viable hybridomas in a continuous suspension bioreactor. Biotechnol Prog 6: 458-64.

    Article  PubMed  CAS  Google Scholar 

  • Bibila TA, Ranucci CS, Konstantin G, Buckland BC and Aunins JG (1994) Monoclonal Antibody Process Development using Medium Concentrates. Biotechnol Prog 10: 87-96.

    PubMed  CAS  Google Scholar 

  • Birch JR, Lambert K, Thompson PW, Kenny AC and Wood LA (1987) Antibody Production with Airlift Fermentors. In: Lydersen BK (ed.) Large Scale Cell Culture Technology (1–20) Hanser, New York.

    Google Scholar 

  • Bree MA, Dhurjati P, Geoghegan RF, Jr. and Robnett B (1988) Kinetic Modelling of Hybridoma Cell Growth and Immunoglobulin Production in a Large-Scale Suspension Culture. Biotechnol Bioeng 32: 1067-1072.

    Article  CAS  PubMed  Google Scholar 

  • Bushell ME, Bell SL, Scott MF, Spier RE, J.N. W and Sanders PG (1994) Enhancement of Monoclonal Antibody yield by Hybridoma fed-batch culture, resulting in extended maintenance of Viable Cell population. Biotechnol Bioeng 44: 1099-1106.

    Article  PubMed  CAS  Google Scholar 

  • Comer MJ, Kearns MJ, Wahl J, Munster M, Lorenz T, Szperalski B, Koch S, Behrendt U and Brunner H (1990) Industrial Production of Monoclonal Antibodies and Therapeutic Proteins by Dialysis Fermentation. Cytotechnology 3: 295-299.

    Article  PubMed  CAS  Google Scholar 

  • de la Broise D, Noiseux M, Lemieux R and Massie B (1991) Long Term Perfusion Culture of Hybridoma: a “Grow or Die” Cell Cycle System. Biotechnol Bioeng 38: 781-787.

    Article  CAS  PubMed  Google Scholar 

  • Fleischacker R (1986) Practical matters in instrumentation for mammalian cell cultures. In: Thilly WJ (ed.) Mammalian Cell Technology) Butterworth, London.

    Google Scholar 

  • Fleischaker RJJ and Sinskey A (1981) Oxygen demand and supply in cell culture. Eur J Appl Microbiol Biotechnol 12: 193-197.

    Article  Google Scholar 

  • Fleischaker RT (1982) An experimental study in the use of instrumentation to analyze metabolism and product formation in cell culture. Thesis, Massachusetts Institute of Technology, Cambridge, MA.

    Google Scholar 

  • Frame K (1988) A Kinetic Study of Hybridoma Growth and Monoclonal Antibody Production in a CSTR. Thesis, University of Minnesota, Minneapolis, MN.

    Google Scholar 

  • Frame KK and Hu W-S (1991) Kinetic study of hybridoma cell growth in continuous culture. I. A model for non-producing cells. Biotechnol Bioeng 37: 55-64.

    Article  PubMed  CAS  Google Scholar 

  • Glacken MW (1991) Bioreactor Control and Optimization. In: Ho CS and Wang DIC (ed.) Animal Cell Bioreactors (373-404) Butterworth-Heinemann, Oxford.

    Google Scholar 

  • Glacken MW, Adema E and Sinskey AJ (1988) Mathematical descriptions of hybridoma culture kinetics: I. Initial metabolic rates. Biotechnol Bioeng 32: 491-506.

    Article  CAS  PubMed  Google Scholar 

  • Glacken MW, Fleischaker RJ and Sinskey AJ (1986) Reduction of waste product excretion via nutrient control: Possible strategies for maximizing product and cell yields on serum in cultures of mammalian cells. Biotechnol Bioeng 28: 1376-1389.

    Article  CAS  PubMed  Google Scholar 

  • Hu WS and Oberg MG (1990) Monitoring and control of animal cell bioreactors: biochemical engineering considerations. [Review]. Bioprocess Technology 10: 451-81.

    PubMed  CAS  Google Scholar 

  • Hu WS and Piret JM (1992) Mammalian cell culture processes. [Review] [44 refs]. Curr Opin Biotechnol 3: 110-4.

    Article  PubMed  CAS  Google Scholar 

  • Hu W-S and Peshwa MV (1991) Animal cell bioreactors. Recent advances and challenges to scale-up. Can J Chem Eng 69: 409-420.

    Article  CAS  Google Scholar 

  • Hu W-S, Zhou W and Europa LF (1998) Controlling mammalian cell metabolism in bioreactors. Korean J Microbiol Biotechnol 8: 8-13.

    Google Scholar 

  • Kitano K, Shintani Y, Ichimori Y, Tsukamoto K, Sasai S and Kida M (1986) Production of human monoclonal antibodies by heterohybridomas. Appl Microbiol Biotechnol 24: 282-286.

    Article  CAS  Google Scholar 

  • Konstantinov K, Chuppa S, Sajan E, Tsai Y, Yoon S and Golini F (1994) Real-time biomass-concentration monitoring in animal-cell cultures. Trends Biotechnol 12: 324-333.

    Article  PubMed  CAS  Google Scholar 

  • Konstantinov KB (1996) Monitoring and Control Of the Physiological State Of Cell Cultures. Biotechnol Bioeng 52: 271-289.

    Article  CAS  PubMed  Google Scholar 

  • Konstantinov KB, Nishio N, Seki T and Yoshida T (1991) Physiologically motivated strategies for control of the fed-batch cultivation of recombinant Escherichia coli for phenylalanine production. J Ferm Bioeng: 350-355.

  • Konstantinov KB, Pambayun R, Matanguihan R, Yoshida T, Perusich CM and Hu W-S (1992) On-line monitoring of hybridoma cell growth using a laser turbidity sensor. Biotechnol Bioeng 40: 1337-1342.

    Article  CAS  PubMed  Google Scholar 

  • Konstantinov KB, Tsai YS, Moles D and Matanguihan R (1996) Control Of Long-Term Perfusion Chinese Hamster Ovary Cell Glucose Auxostat. Biotechnol Prog 12: 100-109.

    Article  PubMed  CAS  Google Scholar 

  • Kurokawa H, Park YS, Iijima S and Kobayashi T (1994) Growth Characteristics in Fed-Batch Culture of Hybridoma Cells with Control of Glucose and Glutamine Concentrations. Biotechnol Bioeng 44: 95-103.

    Article  CAS  PubMed  Google Scholar 

  • Kurokawa H, Tatsuya O, Kamihira M, Park YS, Iijima S and Kobayashi T (1993) Kinetic study of Hybridoma Metabolism and Antibody production in Continuous Culture using Serumfree media. J Ferm Bioeng 76: 128-133.

    Article  CAS  Google Scholar 

  • Kyung Y-S, Peshwa MV, Gryte DM and W-S. H (1994) High cell density culture of mammalian cells with dynamic perfusion based on on-line oxygen uptake rate measurements. Cytotechnology 14: 183-190.

    Article  PubMed  CAS  Google Scholar 

  • Laporte TL, Shevitz J, Kim YS and Wag SS (1995) Hybridoma Perfusion system using a sedimentation device. Biotechnol Techniques 9: 837-842.

    Article  CAS  Google Scholar 

  • Matanguihan RM, Pambayun R, Izuishi T, Konstantinov KB, Yoshida T, Gryte DM and Hu WS (1993) Development of instrumentation and control strategy in bioreactor culture of hybridoma cells. In: Kaminogawa S et al. (eds) Animal Cell Technology: Basic and Applied Aspects. (501-507.) Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Merten OW, Palfi GE, Staheli J and Steiner J (1987) Invasive infrared sensor for the determination of the cell number in a continuous fermentation of hybridomas. Dev Biol Standard 66: 357-360.

    CAS  Google Scholar 

  • Miller WM, Wilke CR and Blanch HW (1988) A kinetic analysis of hybridoma growth and metabolism in batch and continuous suspension culture: Effect of nutrient concentration, dilution rate, and pH. Biotechnol Bioeng 32: 947-965.

    Article  CAS  PubMed  Google Scholar 

  • Nicholson ML, Hampson BS, Pugh GG and Ho CS (1991) Continuous cell culture. In: Ho CS and Wang DIC (ed.) Animal Cell Bioreactors (269-303) Butterworth-Heinemann, Oxford.

    Google Scholar 

  • Oh SKW, Chua FKF and Choo ABH (1995) Intracellular responses of productive hybridomas subjected to high osmotic pressure. Biotechnol Bioeng 46: 525-535.

    Article  CAS  PubMed  Google Scholar 

  • Oyaas K, Ellingsen TE, Dyrset N and Levine DW (1994) Hyperosmotic hybridoma cell cultures: increased monoclonal antibody production with addition of glycine betaine. Biotechnol Bioeng 44: 991-998.

    Article  CAS  PubMed  Google Scholar 

  • Ozturk SS and Palsson BO (1991) Effect of Medium Osmolarity on Hybridoma Growth, Metabolism, and Antibody Production. Biotechnol Bioeng 37: 989-993.

    Article  CAS  PubMed  Google Scholar 

  • Riley MR, M. R, J. ZX, A. AM and W. MD (1997) Simultaneous measurement of glucose and glutamine in insect cell culture media by near infrared spectroscopy. Biotechnol Bioeng 55: 11-15.

    Article  CAS  PubMed  Google Scholar 

  • Seamans TC and Hu W-S (1990) Kinetics of Growth and Antibody Production by a Hybridoma Cell Line in a Perfusion Culture. J Ferm Bioeng 70: 241-245.

    Article  CAS  Google Scholar 

  • Takamatsu H, Hamamoto K, Ishimaru K, Yokoyama S and Tokashiki M (1996) Large-Scale Perfusion Culture Process For Suspended Mammalian That Uses a Centrifuge With Multiple Settling Zones. Appl Microbiol Biotechnol 45: 454-457.

    PubMed  CAS  Google Scholar 

  • Takazawa Y and Tokashiki M (1989) High Cell Density Perfusion Culture of Mouse-Human Hybridomas. Appl Microbiol Biotechnol 32: 280-284.

    Article  Google Scholar 

  • Tokashiki M, Arai T, Hamamoto K and Ishimaru K (1990) High density culture of hybridoma cells using a perfusion culture vessel with an external centrifuge. Cytotechnology 3: 239-44.

    Article  PubMed  CAS  Google Scholar 

  • Vits H and Hu W-S (1992) Fluctuations in Continuous Mammalian Cell Bioreactors with Retention. Biotechnol Prog 8: 397-403.

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Zhang W, Jacklin C, Eppstein L and Freedman D (1993) High Cell Density Perfusion Culture of Hybridoma Cells for Production of Monoclonal Antibodies in the Celligen Packed Bed Reactor. In: Wang G, Zhang W, Jacklin C, Eppstein L and Freedman D, (ed.) Animal Cell Technology: Basic and Applied Aspects. (463-469) Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Xie L and Wang DI (1997) Integrated Approaches to the Design of Media and Feeding Strategies for Fed-batch Cultures of Animal Cells. Trends Biotechnol 15: 109-13.

    Article  PubMed  CAS  Google Scholar 

  • Xie L and Wang DIC (1994) Fed-batch cultivation of animal cells using different medium design concepts and feeding strategies. Biotechnol Bioeng 43: 1175-1189.

    Article  CAS  PubMed  Google Scholar 

  • Xie LZ and Wang DIC (1996) High Cell Density and High Monoclonal Antibody Production through Medium Design and Rational Control In a Bioreactor. Biotechnol Bioeng 51: 725-729.

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Handa-Corrigan A and Spier RE (1993) Kinetics of Cell Metabolism and Antibody Production in High Concentration Perfusion Cultures. In: Zhang S, A. H-C and Spier RE, (ed.) Animal Cell Technology: Basic and Applied Aspects. (309-324.) Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Zhong J-J, Konstantinov KB and Yoshida T (1994) Computer-aided on-line monitoring of physiological variables in suspended cell cultures of Perilla frutescens in a bioreactor. J Ferm Bioeng 77: 445-447.

    Article  CAS  Google Scholar 

  • Zhou W and Hu W-S (1994) On-line characterization of a hybridoma cell culture process. Biotechnol Bioeng 44: 170-177.

    Article  CAS  PubMed  Google Scholar 

  • Zhou W and Hu W-S (1995) Effect of insulin on a serum-free hybridoma culture. Biotechnol Bioeng 47: 181-185.

    Article  CAS  PubMed  Google Scholar 

  • Zhou WC, Rehm J and Hu WS (1995) High viable cell concentration fed-batch cultures of hybridoma cells through on-line nutrient feeding. Biotechnol Bioeng 46: 579-587.

    Article  CAS  PubMed  Google Scholar 

  • Zhou W-C, Rehm J, Europa A and Hu W-S (1997) Alteration of mammalian cell metabolism by dynamic nutrient feeding. Cytotechnology 24: 99-108.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Shou Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gambhir, A., Zhang, C., Europa, A. et al. Analysis of the use of fortified medium in continuous culture of mammalian cells. Cytotechnology 31, 243–254 (1999). https://doi.org/10.1023/A:1008026613975

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008026613975

Navigation