Skip to main content
Log in

The glacilacustrine sedimentary environment of Bowser Lake in the northern Coast Mountains of British Columbia, Canada

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Bowser Lake, a fiord lake in the northern Coast Mountains of British Columbia, contains a thick Holocene fill consisting mainly of silt and clay varves. These sediments were carried into the lake by proglacial Bowser River which drains a high-energy, heavily glacierized basin. Sedimentation in the lake is controlled by seasonal snow and ice melt, by autumn rainstorms, and by rare, but very large jökulhlaups from glacier-dammed lakes in the upper Bowser River basin which complicate environmental inferences from the sedimentary record. Sediment is dispersed through the deep western part of the lake by energetic turbidity currents. The turbidity currents apparently do not overtop a sill that separates the western basin from much shallower areas to the east. Large amounts of silt and clay are deposited from suspension in the eastern part of the lake, but sediment accumulation rates there are much lower than to the west. Several strong acoustic reflectors punctuate the varved fill in the western basin; these may be thick or relatively coarse beds deposited during jökulhlaups or exceptionally large storms. The contemporary sediment yield to Bowser Lake, estimated from sediments in the lake, is about 360 t km-2a-1. This is a relatively high value, but it is less than yields insome other, similar montane basins with extensive snow and ice cover.The most likely explanation for the difference is that large amounts of sediment have been, and continue to be, stored on the Bowser delta andin small proglacial lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, T. W., R. W. Mathewes & C. E. Schweger, 1989. Holocene climatic trends in Canada with special reference to the Hypsithermal interval. In R. J. Fulton (ed.), Chapter 7 of Quaternary Geology of Canada and Greenland, Geol. Surv. Can. 1: 520–528.

  • Brune, G. M., 1953. Trap efficiency of reservoirs. Trans. Am. Geophys. Union 34: 407–418.

    Google Scholar 

  • Chikita, K., N. D. Smith, N. Yonemitsu & M. Perez-Arlucea, in press. Dynamics of sediment-laden underflows passing over a subaqueous sill: glacier-fed Peyto Lake, Alberta. Sedimentology.

  • Church, M. & J. M. Ryder, 1972. Paraglacial sedimentation: a consideration of fluvial processes conditioned by glaciation. Geol. Soc. Am. Bull. 83: 3059–3072.

    Google Scholar 

  • Glague, J. J. & R. W. Mathewes, 1996. Neoglaciation, glacierdammed lakes, and vegetation change in northwestern British Columbia. Arct. Alp. Res. 28: 10–24

    Google Scholar 

  • Clague, J. J. & W. H. Mathews, 1992. The sedimentary record and Neoglacial history of Tide Lake, northwestern British Columbia. Can. J. Earth Sci. 29: 2383–2396.

    Google Scholar 

  • Dean, W. E., Jr., 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J. Sed. Petrol. 44: 242–248.

    Google Scholar 

  • Desloges, J. R., 1987. Paleohydrology of the Bella Coola River basin: an assessment of environmental reconstruction. Ph.D. thesis, Univ. British Columbia, Vancouver, 363 pp.

    Google Scholar 

  • Desloges, J. R., 1994. Varve deposition and the sediment yield record from three small lakes of the Canadian Cordillera. Arct. Alp. Res. 26: 130–140.

    Google Scholar 

  • Desloges, J. R. & M. Church, 1992. Geomorphic implications of glacier outburst flooding: Noeick River valley, British Columbia. Can. J. Earth Sci. 29: 551–564.

    Google Scholar 

  • Desloges, J. R. & R. Gilbert, 1991. Sedimentary record of Harrison Lake: implications for deglaciation in southwestern British Columbia. Can. J. Earth Sci. 28: 800–815.

    Google Scholar 

  • Desloges, J. R. & R. Gilbert, 1994a. Sediment source and hydroclimate inferences from glacial lake sediments: the post-glacial sedimentary record of Lillooet Lake, British Columbia. J. Hydrol. 159: 375–393.

    Google Scholar 

  • Desloges, J. R. & R. Gilbert, 1994b. The record of extreme hydrological and geomorphological events inferred from glaciolacustrine sediments. In L. J. Olive, R. J. Loughran & J. A. Kesby (eds), Variability in Stream Erosion and Sediment Transport, Int. Assoc. Hydrol. Sci., Publ. 224: 133–142.

  • Desloges, J. R. & R. Gilbert, 1995. The sedimentary record of Moose Lake: implications for glacier activity in the Mount Robson area, British Columbia. Can. J. Earth Sci. 32: 65–78.

    Google Scholar 

  • Eyles, N., H. T. Mullins & A. C. Hine, 1990. Thick and fast: sedimentation in a Pleistocene fiord lake of British Columbia, Canada. Geology: 1153–1157.

  • Eyles, N., H. T. Mullins & A. C. Hine, 1991. The seismic stratigraphy of Okanagan Lake, British Columbia: a record of rapid deglaciation in a deep ‘fjord-lake’ basin. Sed. Geol. 73: 13–42.

    Google Scholar 

  • Eyles, N. & R. J. Rogerson, 1977. Glacier movement, ice structures and medial moraine form at a glacier confluence, Berendon Glacier, British Columbia. Can. J. Earth Sci. 14: 2807–2816.

    Google Scholar 

  • Gilbert, R., 1975. Sedimentation in Lillooet Lake, British Columbia. Can. J. Earth Sci. 12: 1697–1711.

    Google Scholar 

  • Gilbert, R., 1983. Sedimentary processes of Canadian arctic fjords. Sed. Geol. 36: 147–175.

    Google Scholar 

  • Gilbert, R., A. E. Aitken & D. S. Lemmen, 1993. The glacimarine sedimentary environment of Expedition Fiord, Canadian High Arctic. Mar. Geol. 110: 257–273.

    Google Scholar 

  • Gilbert, R. & J. R. Desloges, 1987. Sediments of ice-dammed, self-draining Ape Lake, British Columbia. Can. J. Earth Sci. 24: 1735–1747.

    Google Scholar 

  • Gilbert, R. & J. R. Desloges, 1992. The late Quaternary sedimentary record of Stave Lake, southwestern British Columbia. Can. J. Earth Sci. 29: 1997–2006.

    Google Scholar 

  • Gilbert, R. & J. Glew, 1985. A portable percussion coring device for lacustrine and marine sediments. J. Sed. Petrol. 55: 607–608.

    Google Scholar 

  • Gould, H. R., 1951. Some quantitative aspects of Lake Mead turbidity currents. In: J. L. Hough (ed.), Turbidity Currents and the Transportation of Coarse Sediments to Deep Water. Soc. Econ. Paleontol. Mineral., Spec. Publ. 2: 34–52.

  • Harbor, J. & J. Warburton, 1993. Relative rates of glacial and nonglacial erosion in alpine environments. Arct. Alp. Res. 25: 1–7.

    Google Scholar 

  • Holland, S. S., 1964. Landforms of British Columbia. A physiographic outline. B.C. Dep. Mines Pet. Resour., Bull. 48, 138 pp.

  • Kuenen, P. H., 1951. Turbidity currents as the cause of glacial varves. J. Geol. 59: 507–508.

    Google Scholar 

  • Leonard, E. M., 1986a. Varve studies at Hector Lake, Alberta, Canada, and the relationship between glacial activity and sedimentation. Quat. Res. 25: 199–214.

    Google Scholar 

  • Leonard, E. M., 1986b. Use of lacustrine sedimentary sesquences as indicators of Holocene glacial activity, Banff National Park, Alberta, Canada. Quat. Res. 26: 218–231.

    Google Scholar 

  • Mathews, W. H. & J. J. Clague, 1993. The record of jökulhlaups from Summit Lake, northwestern British Columbia. Can. J. Earth Sci. 30: 499–508.

    Google Scholar 

  • Mullins, H. T., N. Eyles & E. J. Hinchey, 1990. Seismic reflection investigation of Kalamalka Lake: a ‘fiord lake’ on the Interior Plateau of southern British Columbia. Can. J. Earth Sci. 27: 1225–1235.

    Google Scholar 

  • Pantin, H. M. & M. R. Leeder, 1987. Reverse flow in turbidity currents: the role of internal solitons. Sedimentology 34: 1143–1155.

    Google Scholar 

  • Pickrill, R. A & J. Irwin, 1983. Sedimentation in a deep glacier-fed lake—Lake Tekapo, New Zealand. Sedimentology 30: 63–75.

    Google Scholar 

  • Reasoner, M. A., 1993. Equipment and procedure improvements for a lightweight, inexpensive, percussion core sampling system. J. Paleolimnol. 8: 273–281.

    Google Scholar 

  • Robbins, J. A. & D. N. Eddington, 1975. Determination of recent sedimentation rates in Lake Michigan using Pb-210 and Cs-137. Geol. Soc. Am. Bull., 86: 1128–1130.

    Google Scholar 

  • Shaw, J., R. Gilbert & J. Archer, 1978. Proglacial lacustrine sedimentation during winter. Arct. Alp. Res. 10: 689–699.

    Google Scholar 

  • Smith, N. D. & G. M. Ashley, 1985. Proglacial lacustrine environment. In G. M. Ashley, J. Shaw & N. D. Smith (eds), Glacial Sedimentary Environments, Soc. Econ. Paleontol. Mineral., Short Course 16: 135–216.

  • Smith, N. D., M. A. Vendl, & S. K. Kennedy, 1982. Comparison of sedimentation regimes in four glacier-fed lakes of western Alberta. In: R. Davidson-Arnott, W. Nickling & B. D. Fahey (eds), Research in Glacial, Glaciofluvial and Glaciolacustrine Systems, Geo Books, Norwich: 203–238.

  • Sylwester, R. E., 1983. Single-channel, high-resolution, seismic-reflection profiling: a review of the fundamentals and instrumentation. In R. A. Geyer (ed.). CRC Handbook of Geophysical Exploration at Sea. CRC Press, Boca Raton, Florida: 77–122.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilbert, R., Desloges, J.R. & Clague, J.J. The glacilacustrine sedimentary environment of Bowser Lake in the northern Coast Mountains of British Columbia, Canada. Journal of Paleolimnology 17, 331–346 (1997). https://doi.org/10.1023/A:1007900411724

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007900411724

Navigation