Skip to main content
Log in

Quantification of Locomotion and the Effect of Food Deprivation on Locomotor Activity in Drosophila

  • Published:
Journal of Insect Behavior Aims and scope Submit manuscript

Abstract

A new method to quantify locomotor behavior in Drosophila is presented, and compared with previous methods. It is based upon a radar wave, reflected by moving flies. A problem associated with the new apparatus is that its output is dependent on fly size. However, for the case the weight of the experimental flies has been determined, a correction is proposed. The method has been used by studying the effect of starvation upon locomotion in Drosophila melanogaster. It was found that starved flies are much more active than well fed flies. The importance of this effect under several conditions is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Angus, J. (1974). Measurement of locomotor activity in Drosophila. Anim. Behav. 22: 890-898.

    Google Scholar 

  • Bell, W. J., and Tortorici, C. (1987). Genetic and non-genetic control of search duration in adults of two morphs of Drosophila melanogaster. J. Insect Physiol. 33: 51-54.

    Google Scholar 

  • Burnet, B., Burnet, L. Connolly, K., and Williamson, N. (1988). Agenetic analysis of locomotor activity in Drosophila melanogaster. Heredity 61: 111-119.

    Google Scholar 

  • Cole, B. J. (1991). Short-term cycles in ants: generation of periodicity by worker interactions. Am. Nat. 137: 244-259.

    Google Scholar 

  • Cole, B. J. (1995). Fractal time in animal behaviour: The movement activity of Drosophila. Anim. Behav. 50: 1317-1324.

    Google Scholar 

  • Connolly, K. J. (1966). Locomotor activity in Drosophila as a function of food deprivation. Nature (London) 209: 224.

    Google Scholar 

  • Engelmann, W., and Mack, J. (1978). Different oscillators control the circadian rhythm of eclosion and activity in Drosophila. J. Comp. Physiol. 127: 229-237.

    Google Scholar 

  • Ewing, A. W. (1963). Attempts to select for spontaneous activity in Drosophila melanogaster. Anim. Behav. 11: 369-378.

    Google Scholar 

  • Hardeland, R., and Stange, G. (1971). Einflü sse von Geschlecht und Alter auf die lokomotorische Aktivitä t von Drosophila. J. Insect Physiol. 17: 427-434.

    Google Scholar 

  • Hirsch, H. V. B., and Tompkins, L. (1994). The flexible fly: Experience-dependent development of complex behaviors in Drosophila melanogaster. J. Exp. Biol. 195: 1-18.

    Google Scholar 

  • Hoffmann, A. A., and Cacoyianni (1990). Territoriality in Drosophila melanogaster as a conditional strategy. Anim. Behav. 40: 526-537.

    Google Scholar 

  • Le Bourg, E., and Lints, F. A. (1984). A longitudinal study of the effects of age on spontaneous locomotor activity in Drosophila melanogaster. Gerontology 30: 79-86.

    Google Scholar 

  • Meehan, M. J., and Wilson, R. (1987). Locomotor activity in the Tyr-1 mutant of Drosophila melanogaster. Behav. Genet. 17: 503-512.

    Google Scholar 

  • Sewell, D. F. (1979). Effect of temperature and density variation on locomotor activity in Drosophila melanogaster: A comparison of behavioural measures. Anim. Behav. 27: 312-313.

    Google Scholar 

  • Stange, G., and Hardeland, R. (1970). Eine methode zur Registrierung der Laufaktivitä t von kleinen Insekten. Oecologia 5: 400-405.

    Google Scholar 

  • Van Dijken, F. R. (1982). Genetic aspects of locomotor activity of the fruitfly Drosophila melanogaster. Ph.D. Thesis, University of Utrecht, Utrecht, The Netherlands.

    Google Scholar 

  • Van't Land, J., van Putten, P., Villaroel, H., Kamping, A., and van Delden, W. (1995). Latitudinal variation in wing length and allele frequencies for Adh and αGpdh in populations of Drosophila melanogaster from Ecuador and Chile. Dros. Inf. Serv. 76: 156.

    Google Scholar 

  • Van't Land, J. (1997). Latitudinal variation in Drosophila melanogaster. On the maintenance of the world-wide polymorphism for Adh, αGpdh and In(21)t. Ph.D. Thesis, University of Groningen, Groningen, The Netherlands.

    Google Scholar 

  • Von Skrzipek, K. H., Krö ner, B., and Hager, H. (1979). Aggression bei Drosophila melanogaster—Laboruntersuchungen. Z. Tierpsychol. 49: 87-103.

    Google Scholar 

  • Ye., S., Aracena, J., Good, D. S., and Bell, W. J. (1994). Correlation between survival during food deprivation and search behavior in populations of Drosophila melanogaster. J. Insect Physiol. 40: 137-142.

    Google Scholar 

  • Zonta, L. A., Costa, R., and M. Osti (1992). Genetic analysis of fickle locomotor behavior in Drosophila melanogaster. J. Genet. 71: 1-9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knoppien, P., van der Pers, J.N.C. & van Delden, W. Quantification of Locomotion and the Effect of Food Deprivation on Locomotor Activity in Drosophila. Journal of Insect Behavior 13, 27–43 (2000). https://doi.org/10.1023/A:1007759424777

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007759424777

Navigation