Neurochemical Research

, Volume 25, Issue 9–10, pp 1385–1396 | Cite as

31P-MRS-Based Determination of Brain Intracellular and Interstitial pH: Its Application to In Vivo H+ Compartmentation and Cellular Regulation during Hypoxic/Ischemic Conditions

  • D. B. Kintner
  • M. K. Anderson
  • J. H. FitzpatrickJr.
  • K. A. Sailor
  • D. D. Gilboe
Article

Abstract

In the last decade, significant progress has been made in the characterization of pH regulation in nervous tissue in vitro. However, little work has been directed at understanding how pH regulatory mechanisms function in vivo. We are interested in how ischemic acidosis can effect pH regulation and modulate the extent of post-ischemic brain damage. We used 31P-MRS to determine normal in vivo pHi and pHe simultaneously in both the isolated canine brain and the intact rat brain. We observed that the 31Pi peak in the 31P-MRS spectrum is heterogeneous and can be deconvoluted into a number of discrete constituent peaks. In a series of experiments, we identified these peaks as arising from either extracellular or intracellular sources. In particular, we identified the peak representing the neurons and astrocytes and showed that they maintain different basal pH (6.95 and 7.05, respectively) and behave differently during hypoxic/ischemic episodes.

Intracellular pH extracellular pH 31P-MRS pH regulation ischemia hypoxia 

REFERENCES

  1. 1.
    Chesler, M. 1990. The regulation and modulation of pH in the nervous system. Prog. Neurobiol. 34:401-427.Google Scholar
  2. 2.
    Deitmer, J. W. and Rose, C. R. 1996. pH regulation and proton signalling by glial cells. Prog. Neurobiol. 48:73-103.Google Scholar
  3. 3.
    Roos, A. and Boron, W. F. 1981. Intracellular pH. Physiol. Rev. 61:296-434.Google Scholar
  4. 4.
    Chesler, M. 1986. Regulation of intracellular pH in reticulospinal neurones of the lamprey, Petromyzon marinus. J. Physiol. (Lond) 381:241-261.Google Scholar
  5. 5.
    Endres, W., Ballanyi, K., Serve, G., and Grafe, P. 1986. Excitatory amino acids and intracellular pH in motoneurons of the isolated frog spinal cord. Neurosci. Lett. 72:54-58.Google Scholar
  6. 6.
    Heiple, J. M. and Taylor, D. L. 1981. An optical technique for measurement of intracellular pH in single living cells. Kroc. Found. Ser. 15:21-54.Google Scholar
  7. 7.
    Shrode, L. D. and Putnam, R. W. 1994. Intracellular pH regulation in primary rat astrocytes and C6 glioma cells. Glia 12:196-210.Google Scholar
  8. 8.
    Bevensee, M. O., Cummins, T. R., Haddad, G. G., Boron, W. F., and Boyarsky, G. 1996. pH regulation in single CA1 neurons acutely isolated from the hippocampi of immature and mature rats. J. Physiol. (Lond) 494:315-328.Google Scholar
  9. 9.
    Volk, C., Albert, T., and Kempski, O. S. 1998. A proton-translocating H+-ATPase is involved in C6 glial pH regulation. Biochim. Biophys. Acta 1372:28-36.Google Scholar
  10. 10.
    Hertz, L. and Peng, L. 1992. Energy metabolism at the cellular level of the CNS. Can. J. Physiol. Pharmacol. 70:S145-S157.Google Scholar
  11. 11.
    Kusumoto, M., Dux, E., Paschen, W., and Hossmann, K. A. 1996. Susceptibility of hippocampal and cortical neurons to Argon-mediated in vitro ischemia. J. Neurochem. 67:1613-1621.Google Scholar
  12. 12.
    Tombaugh, G. C. and Sapolsky, R. M. 1990. Mild acidosis protects hippocampal neurons from injury induced by oxygen and glucose deprivation. Brain Res. 506:343-345.Google Scholar
  13. 13.
    Goldberg, M. P. and Choi, D. W. 1900. Combined oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury. J. Neurosci. 13:3510-3524.Google Scholar
  14. 14.
    Espanol, M. T., Litt, L., Chang, L.-H., James, T. L., Weinstein, P. R., and Chan, P. H. 1996. Adult rat brain-slice preparation for nuclear magnetic resonance spectroscopy studies of hypoxia. Anesthesiology 84:201-210.Google Scholar
  15. 15.
    Schurr, A. and Rigor, B. M. 1989. Cerebral ischemia revisited: New insights as revealed using in vitro brain slice preparations. Experientia 45:684-695.Google Scholar
  16. 16.
    Cowan, A. I. and Martin, R. L. 1995. Simultaneous measurement of pH and membrane potential in rat dorsal vagal motoneurons during normoxia and hypoxia: a comparison in bicarbonate and HEPES buffers. J. Neurophysiol. 74:2713-2721.Google Scholar
  17. 17.
    Lin, C. W., Kalaria, R. N., Kroon, S. N., Bae, J. Y., Sayre, L. M., and LaManna, J. C. 1996. The amiloride-sensitive Na+/H+exchange antiporter and control of intracellular pH in hippocampal brain slices. Brain Res. 731:108-113.Google Scholar
  18. 18.
    Pirttila, T. R. and Kauppinen, R. A. 1994. Regulation of intracellular pH in guinea pig cerebral cortex ex vivo studied by 31P and 1H nuclear magnetic resonance spectroscopy: role of extracellular bicarbonate and chloride. J. Neurochem. 62:656-664.Google Scholar
  19. 19.
    Gilboe, D. D., Kintner, D. B., Anderson, M. E., and Fitzpatrick, J. H., Jr. 1998. NMR-based identification of intra-and extracellular compartments of the brain Pi peak. J. Neurochem. 71:2542-2548.Google Scholar
  20. 20.
    Voipio, J. and Kaila, K. 1993. Interstitial pCO2 and pH in rat hippocampal slices measured by means of a novel fast CO2/H(+)-sensitive microelectrode based on a PVC-gelled membrane. Pflugers Arch. 423:193-201.Google Scholar
  21. 21.
    Jiang, C., Agulian, S., and Haddad, G. G. 1991. O2 tension in adult and neonatal brain slices under several experimental conditions. Brain Res. 568:159-164.Google Scholar
  22. 22.
    Whittingham, T. S., Lust, W. D., Christakis, D. A., and Passonneau, J. V. 1984. Metabolic stability of hippocampal slice preparations during prolonged incubation. J. Neurochem. 43: 689-696.Google Scholar
  23. 23.
    Roos, A. 1900. Intracellular pH and buffering power of rat brain. Am. J. Physiol. 221:176-181.Google Scholar
  24. 24.
    Messeter, K. and Siesjö, B. K. 1971. The intracellular pH'in the brain in acute and sustained hypercapnia. Acta Physiol. Scand. 83:210-219.Google Scholar
  25. 25.
    LaManna, J. C. and McCracken, K. A. 1984. The use of neutral red as an intracellular pH indicator in rat brain cortex in vivo. Anal. Biochem. 142:117-125.Google Scholar
  26. 26.
    Ammann, D., Lanter, F., Steiner, R. A., Schulthess, P., Shijo, Y., and Simon, W. 1981. Neutral carrier based hydrogen ion selective microelectrode for extra-and intracellular studies. Anal. Chem. 53:2267-2269.Google Scholar
  27. 27.
    Chesler, M. and Kraig, R. P. 1989. Intracellular pH transients of mammalian astrocytes. J. Neurosci. 9:2011-2019.Google Scholar
  28. 28.
    Silver, I. A. and Erecinska, M. 1992. Ion homeostasis in rat brain in vivo: intra-and extracellular [Ca2+] and [H+] in the hippocampus during recovery from short-term, transient ischemia. J. Cereb. Blood Flow Metab. 12:759-772.Google Scholar
  29. 29.
    Chance, B., Nakase, Y., Bond, M., Leigh, J. S., Jr., and McDonald, G. 1978. Detection of 31P nuclear magnetic resonance signals in brain by in vivo and freeze-trapped assays. Proc. Natl. Acad. Sci. U.S.A. 75:4925-4929.Google Scholar
  30. 30.
    Ackerman, J. J., Grove, T. H., Wong, G. G., Gadian, D. G., and Radda, G. K. surface coils. Nature 283:167-170.Google Scholar
  31. 31.
    Fukushima, E. and Stephen, B. W. 1981. Experimental pulse NMR: a nuts and bolts approach. Addison-Wesley Pub. Co., Reading, Mass.Google Scholar
  32. 32.
    Callaghan, P. T. 1991. Principles of nuclear magnetic resonance microscopy. Oxford University Press, New York.Google Scholar
  33. 33.
    Petroff, O. A., Prichard, J. W., Behar, K. L., Alger, J. R., den Hollander, J. A., and Shulman, R. G. 1985. Cerebral intracellular pH by 31P nuclear magnetic resonance spectroscopy. Neurology 35:781-788.Google Scholar
  34. 34.
    Fitzpatrick, J. H., Jr., Kintner, D., Anderson, M., Westler, W. M., Emoto, S. E., and Gilboe, D. D. 1996. NMR studies of Pi-containing extracellular and cytoplasmic compartments in brain. J. Neurochem. 66:2612-2620.Google Scholar
  35. 35.
    Griffith, J. K., Cordisco, B. R., Lin, C. W., and LaManna, J. C. 1992. Distribution of intracellular pH in the rat brain cortex after global ischemia as measured by color film histophotometry of neutral red. Brain Res. 573:1-7.Google Scholar
  36. 36.
    Hope, P. L., Cady, E. B., Chu, A., Delpy, D. T., Gardiner, R. M., and Reynolds, E. O. 1987. Brain metabolism and intracellular pH during ischaemia and hypoxia: an in vivo 31P and 1H nuclear magnetic resonance study in the lamb. J. Neurochem. 49:75-82.Google Scholar
  37. 37.
    Nioka, S., Smith, D., Chance, B., and Lockard, S. 1990. Metabolic heterogeneity in brain tissue during incomplete ischemia and reperfusion. NMR Biomed. 3:239-247.Google Scholar
  38. 38.
    Kauppinen, R. A., Williams, S. R., Gadian, D. G., Brock, K. J., and Bachelard, H. S. 1989. Studies on substrate requirements for maintenance of energy state and intracellular pH in cortical brain slices using 31P NMR. Acta Physiol. Scand 136(Suppl. 582):73.Google Scholar
  39. 39.
    Robbins, R. C., Balaban, R. S., and Swain, J. A. 1990. Intermittent hypothermic asanguineous cerebral perfusion (cerebroplegia) protects the brain during prolonged circulatory arrest. A phosphorus 31 nuclear magnetic resonance study. J. Thorac. Cardiovasc. Surg. 99:878-884.Google Scholar
  40. 40.
    Portman, M. A. and Ning, X. H. 1990. Developmental adaptations in cytosolic phosphate content and pH regulation in the sheep heart in vivo. J. Clin. Invest. 86:1823-1828.Google Scholar
  41. 41.
    Sunagawa, S., Buist, R. J., Hruska, F. E., Sutherland, G. R., and Peeling, J. 1994. Hydrogen ion compartmentation during and following cerebral ischemia evaluated by 31P NMR spectroscopy. Brain Res. 641:328-332.Google Scholar
  42. 42.
    Macri, M. A., Campanella, R., De Luca, F., Montalbano, A., Taggi, F., and Maraviglia, B. 1995. In vivo 31P spectroscopy study of treated and untreated recovery of rat partial brain ischemia. Magn. Reson. Med. 34:542-547.Google Scholar
  43. 43.
    Kintner, D. B., Anderson, M. E., Sailor, K. A., Dienel, G., Fitzpatrick, J. H., Jr., and Gilboe, D. D. 1999. In vivo microdialysis of 2-deoxyglucose 6-phosphate into brain: A novel method for the measurement of interstitial pH using 31P-NMR. J. Neurochem. 72:405-412.Google Scholar
  44. 44.
    Kraig, R. P. and Chesler, M. 1990. Astrocytic acidosis in hyperglycemic and complete ischemia. J. Cereb. Blood Flow Metab. 10:104-114.Google Scholar
  45. 45.
    Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M. H., Patlak, C. S., Pettigrew, K. D., Sakurada, O., and Shinohara, M. 1977. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28:897-916.Google Scholar
  46. 46.
    BeltrandelRio, H. and Wilson, J. E. 1991. Hexokinase of rat brain mitochondria: relative importance of adenylate kinase and oxidative phosphorylation as sources of substrate ATP, and interaction with intramitochondrial compartments of ATP and ADP. Arch. Biochem. Biophys. 286:183-194.Google Scholar
  47. 47.
    Pulsinelli, W. A. and Cooper, A. J. 1989. Metabolic encephalopaties and coma, Pages 765-781, in Siegel, G., Agranoff, B., Ablers, R. W., and Molinoff, P. (eds.), Basic Neurochemistry. Raven Press, New York.Google Scholar
  48. 48.
    Berl, S. 1971. Cerebral amino acid metabolism in hepatic coma. Exp. Biol. Med. 4:71-84.Google Scholar
  49. 49.
    Gilboe, D. D., Kintner, D. B., Sailor, K. A., Anderson, M. E., and Fitzpatrick, J. H., Jr. 1998. Brain intracellular and interstitial pH changes during graded hypoxia, Pages 53-60, in Krieglstein, J. (ed.), Pharmacology of Cerebral Ischemia-1998. Wissenschaftliche Verlagsgesellschaft mbH StuttgartGoogle Scholar
  50. 50.
    Gottfried, J. A. and Chesler, M. 1996. Temporal resolution of activity-dependent pH shifts in rat hippocampal slices. J. Neurophysiol. 76:2804-2807.Google Scholar
  51. 51.
    Grieb, P. 1990. Effect of acetazolamide on brain intracellular pH. J. Cereb. Blood Flow Metab. 10:588-589.Google Scholar
  52. 52.
    Li, P. A. and Siesjö, B. K. 1997. Role of hyperglycaemia-related acidosis in ischaemic brain damage. Acta Physiol. Scand. 161: 567-580.Google Scholar
  53. 53.
    Choi, D. W. and Koh, J. Y. 1998. Zinc and brain injury. [Review]. Annu. Rev. Neurosci. 21:347-375.Google Scholar
  54. 54.
    Tombaugh, G. C. 1994. Mild acidosis delays hypoxic spreading depression and improves neuronal recovery in hippocampal slices. J. Neurosci. 14:5635-5643.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • D. B. Kintner
    • 1
  • M. K. Anderson
    • 2
  • J. H. FitzpatrickJr.
    • 3
  • K. A. Sailor
    • 1
  • D. D. Gilboe
    • 1
    • 4
  1. 1.Department of Neurological SurgeryUniversity of Wisconsin Medical SchoolMadison
  2. 2.Department of BiochemistryUSA
  3. 3.USA
  4. 4.Department of PhysiologyUSA

Personalised recommendations