Pharmaceutical Research

, Volume 17, Issue 12, pp 1516–1525 | Cite as

A Human Physiologically-Based Model for Glycyrrhzic Acid, A Compound Subject to Presystemic Metabolism and Enterohepatic Cycling

  • Bart Ploeger
  • Tjeert Mensinga
  • Adriënne Sips
  • Jan Meulenbelt
  • Joost DeJongh


Purpose. To analyze the role of the kinetics of glycyrrhizic acid (GD) in its toxicity. A physiologically-based pharmacokinetic (PBPK) model that has been developed for humans.

Methods. The kinetics of GD, which is absorbed as glycyrrhetic acid (GA), were described by a human PBPK model, which is based on a rat model. After rat to human extrapolation, the model was validated on plasma concentration data after ingestion of GA and GD solutions or licorice confectionery, and an additional data derived from the literature. Observed interindividual variability in kinetics was quantified by deriving an optimal set of parameters for each individual.

Results. The a-priori defined model successfully forecasted GA kinetics in humans, which is characterized by a second absorption peak in the terminal elimination phase. This peak is subscribed to enterohepatic cycling of GA metabolites. The optimized model explained most of the interindividual variance, observed in the clinical study, and adequately described data from the literature.

Conclusions. Preclinical information on GD kinetics could be incorporated in the human PBPK model. Model simulations demonstrate that especially in subjects with prolonged gastrointestinal residence times, GA may accumulate after repeated licorice consumption, thus increasing the health risk of this specific subgroup of individuals.

glycyrrhizic acid modeling enterohepatic cycling PBPK pharmacokinetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. G. van Rossum, A. G. Vulto, R. A. deMan, J. T. Brouwer, and S. W. Schalm. Review article: Glycyrrhizin as a potential treatment for chronic hepatitis C. Aliment. Pharmacol. Ther. 12:199–205 (1998).Google Scholar
  2. 2.
    F. C. Stormer, R. Reistad, and J. Alexander. Glycyrrhizic acid in liquorice—evaluation of health hazard. Food Addit. Contam. 31: 303–312 (1993).Google Scholar
  3. 3.
    J. W. Funder, P. T. Pearce, R. Smith, and A. I. Smith. Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated. Science 242:583–585 (1988).Google Scholar
  4. 4.
    H. J. Clewell, 3rd and B. M. Jarnot. Incorporation of pharmacokinetics in noncancer risk assessment: Example with chloropentafluorobenzene. Risk Anal. 14:265–276 (1994).Google Scholar
  5. 5.
    M. E. Andersen. Development of physiologically based pharmacokinetic and physiologically based pharmacodynamic models for applications in toxicology and risk assessment. Toxicol. Lett. 79: 35–44 (1995).Google Scholar
  6. 6.
    M. E. Andersen, H. J. Clewell, 3rd, and C. B. Frederick. Applying simulation modeling to problems in toxicology and risk assessment—a short perspective. Toxicol. Appl. Pharmacol. 133: 181–187 (1995).Google Scholar
  7. 7.
    B. A. Ploeger, J. Meulenbelt, and J. DeJongh. Physiologically based pharmacokinetic modeling of glycyrrhizic acid, a compound subject to presystemic metabolism and enterohepatic cycling. Toxicol. Appl. Pharmacol. 162:177–188 (2000).Google Scholar
  8. 8.
    A. J. Coupe, S. S. Davis, and I. R. Wilding. Variation in gastrointestinal transit of pharmaceutical dosage forms in healthy subjects. Pharm. Res. 8:360–364 (1991).Google Scholar
  9. 9.
    F. N. Christensen, S. S. Davis, J. G. Hardy, M. J. Taylor, D. R. Whalley, and C. G. Wilson. The use of gamma scintigraphy to follow the gastrointestinal transit of pharmaceutical formulations. J. Pharm. Pharmacol. 37:91–95 (1985).Google Scholar
  10. 10.
    J. E. Devereux, J. M. Newton, and M. B. Short. The influence of density on the gastrointestinal transit of pellets. J. Pharm. Pharmacol. 42:500–501 (1990).Google Scholar
  11. 11.
    D. A. Adkin, S. S. Davis, R. A. Sparrow, P. D. Huckle, A. J. Phillips, and I. R. Wilding. The effects of pharmaceutical excipients on small intestinal transit. Br. J. Clin. Pharmacol. 39:381–387 (1995).Google Scholar
  12. 12.
    M. Lawson, G. T. Everson, W. Klingensmith, and F. Kern, Jr. Coordination of gastric and gallbladder emptying after ingestion of a regular meal. Gastroenterology 85:866–870 (1983).Google Scholar
  13. 13.
    M. Proano, M. Camilleri, S. F. Phillips, M. L. Brown, and G. M. Thomforde. Transit of solids through the human colon: regional quantification in the unprepared bowel. Am. J. Physiol. 258:G856–G862 (1990).Google Scholar
  14. 14.
    T. Akao. Hydrolysis of glycyrrhetyl mono-glucuronide to glycyrrhetic acid by glycyrrhetyl mono-glucuronide beta-Dglucuronidase of Eubacterium sp. GLH. Biol. Pharm. Bull. 20: 1245–1249 (1997).Google Scholar
  15. 15.
    K. Niinuma, Y. Kato, H. Suzuki, C. A. Tyson, V. Weizer, J. E. Dabbs, R. Froehlich, C. E. Green, and Y. Sugiyama. Primary active transport of organic anions on bile canalicular membrane in humans. Am. J. Physiol. 276:G1153–G1164 (1999).Google Scholar
  16. 16.
    S. Ishida, T. Ichikawa, and Y. Sakiya. Binding of glycyrrhetinic acid to rat plasma, rat serum albumin, humanserum, and human serum albumin. Chem. Pharm. Bull. 36:440–443 (1988).Google Scholar
  17. 17.
    R. L. Dedrick. Animal scale-up. J. Pharmacokinet. Biopharm. 1: 435–461 (1973).Google Scholar
  18. 18.
    M. V. Evans, W. D. Crank, H. M. Yang, and J. E. Simmons. Applications of sensitivity analysis to a physiologically based pharmacokinetic model for carbon tetrachloride in rats. Toxicol. Appl. Pharmacol. 128:36–44 (1994).Google Scholar
  19. 19.
    P. Armitage and G. Berry, Statistical methods in medical research, Blackwell Science Ltd., Oxford, United Kingdom, 1994.Google Scholar
  20. 20.
    D. Horter and J. B. Dressman. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv. Drug Deliv. Rev. 25:3–14 (1997).Google Scholar
  21. 21.
    S. Krahenbuhl, F. Hasler, B. M. Frey, F. J. Frey, R. Brenneisen, and R. Krapf. Kinetics and dynamics of orally administered 18 beta-glycyrrhetinic acid in humans. J. Clin. Endocrinol. Metab. 78:581–585 (1994).Google Scholar
  22. 22.
    S. Gunnarsdottir and T. Johannesson. Glycyrrhetic acid in human blood after ingestion of glycyrrhizic acid in licorice. Pharmacol. Toxicol. 81:300–302 (1997).Google Scholar
  23. 23.
    K. Abe, A. Suzuki, H. Katayama, Y. Tatsumi, and E. Yumioka. Determination of 18 beta-glycyrrhetic acid in human plasma by high-performance liquid chromatography. J. Chromatogr. B. Biomed. Appl. 653:112–115 (1994).Google Scholar
  24. 24.
    S. Takeda, H. Ono, Y. Wakui, A. Asami, Y. Matsuzaki, H. Sasaki, M. Aburada, and E. Hosoya. Determination of glycyrrhetic acid in human serum by high-performance liquid chromatography with ultraviolet detection. J. Chromatogr. B. Biomed. Appl. 530:447–451 (1990).Google Scholar
  25. 25.
    J. Blanchard, L. M. Tang, and M. E. Earle. Reevaluation of the absorption of carbenoxolone using an in situ rat intestinal technique. J. Pharm. Sci. 79:411–414 (1990).Google Scholar
  26. 26.
    K. W. Heaton and L. O'Donnell. An office guide to whole-gut transit time. Patients' recollection of their stool form. J. Clin. Gastroenterol. 19:28–30 (1994).Google Scholar
  27. 27.
    R. Best and B. R. Walker. Additional value of measurement of urinary cortisone and unconjugated cortisol metabolites in assessing the activity of 11 beta-hydroxysteroid dehydrogenase in vivo. Clin. Endocrinol. 47:231–236 (1998).Google Scholar
  28. 28.
    R. Brown, J. Foran, S. Olin, and D. Robinson. Physiological parameter values for PBPK models, International Life Sciences Institute and Risk Science Institute, Washington DC, 1994.Google Scholar
  29. 29.
    International Commission of Radiological Protection (ICRP), Publication 23: Report of the Task Group on Reference Man, Pergamon Press, New York, 1975.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Bart Ploeger
    • 1
    • 2
  • Tjeert Mensinga
    • 3
    • 4
  • Adriënne Sips
    • 5
  • Jan Meulenbelt
    • 3
    • 4
  • Joost DeJongh
    • 6
  1. 1.LAP&P Consultants BVThe Netherlands
  2. 2.Leiden Advanced Pharmacokinetics & Pharmacodynamics (LAP&P) ConsultantsLeidenThe Netherlands
  3. 3.National Poisons Control CentreNational Institute of Public Health and the EnvironmentBilthovenThe Netherlands
  4. 4.Department of Intensive Care and Clinical ToxicologyUniversity Medical Centre Utrecht (UMCU)UtrechtThe Netherlands
  5. 5.Laboratory for Exposure Assessment and Environmental EpidemiologyNational Institute of Public Health and the EnvironmentBilthovenThe Netherlands
  6. 6.Leiden Advanced Pharmacokinetics & Pharmacodynamics (LAP&P) ConsultantsLeidenThe Netherlands

Personalised recommendations