Advertisement

Pharmaceutical Research

, Volume 17, Issue 12, pp 1526–1530 | Cite as

Characteristics of Choline Transport Across the Blood-Brain Barrier in Mice: Correlation with In Vitro Data

  • Hideyasu Murakami
  • Naoyuki Sawada
  • Noriko Koyabu
  • Hisakazu Ohtani
  • Yasufumi Sawada
Article

Abstract

Purpose. We examined the functional properties of choline transport across the blood-brain barrier (BBB) in mice. We compared the kinetic parameters and transport properties with those found in our in vitro uptake experiments using mouse brain capillary endothelial cells (MBEC4).

Methods. The permeability coefficient-surface area product (PS) values of [3H]choline at the BBB were estimated by means of anin situ brain perfusion technique in mice.

Results. [3H]Choline uptake was well described by a two-component model: a saturable component and a nonsaturable linear component. The [3H]choline uptake was independent of pH and Na+, but was significantly decreased by the replacement of Na+ with K+. Various basic drugs, including substrates and inhibitors of the organic cation transporter, significantly inhibited the [3H]choline uptake. These in situ (in vivo) results corresponded well to the in vitro results and suggest that the choline transporter at the BBB is a member of the organic cation transporter (OCT) family.

Conclusion. The choline transport mechanism at the BBB is retained in MBEC4.

choline in situ brain perfusion technique blood-brain barrier organic cation transporter in vivo and in vitro correlation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    R. Spector. Micronutrient homeostasis in mammalian brain and cerebrospinal fluid. J. Neurochem. 53:1667–1674 (1989).Google Scholar
  2. 2.
    J. K. Blusztajn and R. J. Wurtman. Choline and cholinergic neurons. Science 221:614–620 (1983).Google Scholar
  3. 3.
    R. J. Wurtman. Choline metabolism as a basis for the selective vulnerability of cholinergic neurons. Trends Neurosci. 15:117–122 (1992).Google Scholar
  4. 4.
    E. M. Cornford, L. D. Braun, and W. H. Oldendorf. Carrier mediated blood-brain barrier transport of choline and certain choline analogs. J. Neurochem. 30:299–308 (1978).Google Scholar
  5. 5.
    N. Sawada, H. Takanaga, H. Matsuo, M. Naito, T. Tsuruo, and Y. Sawada. Choline uptake by mouse brain capillary endothelial cells in culture. J. Pharm. Pharmacol. 51:847–852 (1999).Google Scholar
  6. 6.
    T. Tatsuta, M. Naito, K. Mikami, and T. Tsuruo, Enhanced expression by the brain matrix of P-glycoprotein in brain capillary endothelial cells. Cell Growth Differentiation 5:1145–1152 (1994).Google Scholar
  7. 7.
    H. Murakami, H. Takanaga, H. Matsuo, H. Ohtani, and Y. Sawada. Comparison of blood-brain barrier permeability in mice and rats using in situ brain perfusion technique. Am. J. Physiol. in press (2000).Google Scholar
  8. 8.
    K. Yamaoka, Y. Tanigawara, T. Nakagawa, and T. Uno. A pharmacokinetic analysis program (multi) for microcomputer. J. Pharmacobio-Dyn. 4:879–885 (1981).Google Scholar
  9. 9.
    I. Tamai, and A. Tsuji. Carrier-mediated approaches for oral drug delivery. Drug. Deliv. Rev. 19:401–424 (1996).Google Scholar
  10. 10.
    B. Giros, S. El Mestikawy, L. Bertrand, and M. G. Caron. Cloning and and functional characterization of a cocaine-sensitive dopamine transporter. FEBS Lett. 295:149–154 (1991).Google Scholar
  11. 11.
    A. S. Chang, S. M. Chang, D. M. Starnes, S. Schroeter, A. L. Bauman, and R. D. Blakely. Cloning and expression of the mouse serotonin transporter. Mol. Brain Res. 43:185–192 (1996).Google Scholar
  12. 12.
    J. Masson, C. Sagne, M. Hamon, and S. El Mestikawy. Neurotransmitter transporters in the central nervous system. Pharm. Rev. 51:439–464 (1999).Google Scholar
  13. 13.
    B. M. Cohen, P. F. Renshaw, A. L. Stoll, R. J. Wurtman, D. Yurgelun-Todd, and S. M. Babb. Decreased brain choline uptake in older adults. An in vivo proton magnetic resonance spectroscopy study. JAMA 274:902–907 (1995).Google Scholar
  14. 14.
    J. Klein, A. Koppen, and K. Loffelholz. Uptake and storage of choline by rat brain: influence of dietary choline supplementation. J. Neurochem. 57:370–375 (1991).Google Scholar
  15. 15.
    J. Klein, A. Koppen, K. Loffelholz, and J. Schmitthenner. Uptake and metabolism of choline by rat brain after acute choline administration. J. Neurochem. 58:870–876 (1992).Google Scholar
  16. 16.
    D. Grundemann, V. Gorboulev, S. Gambaryan, M. Veyhl, and H. Koepsell. Drug excretion mediated by a new prototype of polyspecific transporter. Nature 372:549–552 (1994).Google Scholar
  17. 17.
    M. Okuda, H. Saito, Y. Urakami, M. Takano, and K. Inui. cDNA cloning and functional expression of a novel rat kidney organic cation transporter, OCT2. Biochem. Biophys. Res. Commun. 224: 500–507 (1996).Google Scholar
  18. 18.
    R. Kekuda, P. D. Prasad, X. Wu, H. Wang, Y-J. Fei, F. H. Leibach, and V. Ganapathy. Cloning and functional characterization of a potential-sensitive, polyspecific organic cation transporter (OCT3) most abundantly expressed in placenta. J. Biol. Chem. 273:15971–15979 (1998).Google Scholar
  19. 19.
    I. Tamai, H. Yabuuchi, J. Nezu, Y. Sai, A. Oku, M. Shimane, and A. Tsuji. Cloning and characterization of a novel human pHdependent organic cation transporter, OCTN1. FEBS Lett. 419: 107–111 (1997).Google Scholar
  20. 20.
    I. Tamai, R. Ohashi, J. Nezu, H. Yabuuchi, A. Oku, M. Shimane, Y. Sai, and A. Tsuji. Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J. Biol. Chem. 273:20378–20382 (1998).Google Scholar
  21. 21.
    I. Tamai, R. Ohashi, M. Katsura, K. Sakamoto, K. China, K. Yamaguchi, J. Nezu, A. Oku, M. Shimane, Y. Sai, and A. Tsuji. Multiplicity of functional characterization and tissue distribution of OCTN-transporter family. Xenobio. Metabol. Dispos. 14(suppl.): S114–S115 (1999).Google Scholar
  22. 22.
    A. E. Busch, S. Quester, J. C. Ulzheimer, V. Gorboulev, A. Akhoundova, S. Waldegger, F. Lang, and H. Koepsell. Monoamine neurotransmitter transport mediated by the polyspecific cation transporter rOCT1. FEBS Lett. 395:153–156 (1996a).Google Scholar
  23. 23.
    A. E. Busch, U. Karbach, D. Miska, V. Gorboulev, A. Akhoundova, C. Volk, P. Arndt, J. C. Ulzheimer, M. S. Sonders, C. Baumann, S. Waldegger, F. Lang, and H. Koepsell. Human neurons express the polyspecific cation transporter hOCT2, which translocates monoamine neurotransmitters, amantadine, and memantine. Mol. Pharmacol. 54:342–352 (1998).Google Scholar
  24. 24.
    D. Grundemann, S. Koster, N. Kiefer, T. Breidert, M. Engelhardt, F. Spitzenberger, N. Obermuller, and E. Schomig. Transport of monoamine transmitters by the organic cation transporter type 2, OCT2. J. Biol.Chem. 273:30915–30920 (1998).Google Scholar
  25. 25.
    A. E. Busch, S. Quester, J. C. Ulzheimer, S. Waldegger, V. Gorboulev, P. Arndt, F. Lang, and H. Koepsell. Electrogenic properties and substrate specificity of the polyspecific rat cation transporter rOCT1. J. Biol. Chem. 271:32599–32064 (1996b).Google Scholar
  26. 26.
    M. Okuda, Y. Urakami, H. Saito, and K. Inui. Molecular mechanisms of organic cation transport in OCT2-expressing Xenopus oocytes. Biochim. Biophys. Acta 1417:224–231 (1999).Google Scholar
  27. 27.
    X. Wu, R. Kekudam, W. Huang, Y-J. Fei, F. H. Leibach, J. Chen, S. J. Conway, and V. Ganapathy. Identity of the organic cation transporter OCT3 as the extraneuronal monoamine transporter (uptake2) and evidence for the expression of the transporter in the brain. J. Biol. Chem. 273:32776–32786 (1998).Google Scholar
  28. 28.
    X. Wu, W. Huang, P. D. Prasad, P. Seth, D. P. Rajan, F. H. Leibach, J. Chen, S. J. Conway, and V. Ganapathy. Functional characteristics and tissue distribution pattern of organic cation transporter 2 (OCTN2), an organic cation/carnitine transporter. J. Pharmacol. Exp. Ther. 290:1482–1492 (1999).Google Scholar
  29. 29.
    H. Yabuuchi, I. Tamai, J. Nezu, K. Sakamoto, A. Oku, M. Shimane, Y. Sai, and A. Tsuji. Novel membrane transporter OCTN1 mediates multispecific, bidirectional, and pH-dependent transport of organic cations. J. Pharmacol. Exp. Ther. 289:768–773 (1999).Google Scholar
  30. 30.
    Y. Miyamoto, V. Ganapathy, and F. H. Leibach. Transport of guanidine in rabbit intestinal brush-border membrane vesicles. Am. J. Physiol. 255:G85–92 (1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Hideyasu Murakami
    • 1
  • Naoyuki Sawada
    • 1
  • Noriko Koyabu
    • 1
  • Hisakazu Ohtani
    • 1
  • Yasufumi Sawada
    • 1
    • 2
  1. 1.Department of Medico-Pharmaceutical Sciences, Graduate School of Pharmaceutical SciencesKyushu University, Higashi-kuFukuokaJapan
  2. 2.Department of Medico-Pharmaceutical Sciences, Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan

Personalised recommendations